中性粒细胞髓过氧化物酶氧化非甾体抗炎药产生毒性反应性代谢物,诱导白血病细胞死亡

Newton H. Tran , Dinesh Babu , Steven Lockhart , Andrew G. Morgan , Nadine Commandeur , Md Harunur Rashid , Béla Reiz , Lusine Tonoyan , Arno G. Siraki
{"title":"中性粒细胞髓过氧化物酶氧化非甾体抗炎药产生毒性反应性代谢物,诱导白血病细胞死亡","authors":"Newton H. Tran ,&nbsp;Dinesh Babu ,&nbsp;Steven Lockhart ,&nbsp;Andrew G. Morgan ,&nbsp;Nadine Commandeur ,&nbsp;Md Harunur Rashid ,&nbsp;Béla Reiz ,&nbsp;Lusine Tonoyan ,&nbsp;Arno G. Siraki","doi":"10.1016/j.rbc.2023.100013","DOIUrl":null,"url":null,"abstract":"<div><p>Fenamic acids are a group of non-steroidal anti-inflammatory drugs (NSAIDs) that are among the most common drugs prescribed globally. However, they have been associated with many adverse effects, such as agranulocytosis, neutropenia, hepatotoxicity, and nephrotoxicity. The interactions between peroxidase enzymes and fenamic acid-like NSAIDs cause the formation of reactive species, potentially involved in side effects. The aim of this study was to investigate the neutrophil myeloperoxidase (MPO)-mediated bioactivation of fenamic acids based on N-phenylanthranilic acid (NPA) and its four drug analogues: flufenamic acid (FFA), mefenamic acid (MFA), meclofenamic acid (MCFA), and tolfenamic acid (TFA). We hypothesized that the enzymatic oxidation of fenamic acids by MPO/hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) would produce reactive metabolites, cause oxidative damage and induce cytotoxicity. We utilized UV–Vis spectrophotometry, liquid chromatography-mass spectrometry (LC-MS), and electron paramagnetic spin resonance (EPR) spectroscopy using purified MPO from human neutrophils. In addition, <em>in vitro</em> studies were performed with MPO-containing human promyelocytic leukemia (HL-60) cells for cytotoxicity and immuno-spin trapping to detect protein-free radicals. UV–Vis spectrophotometry revealed that MPO oxidized the fenamic acids. LC-MS analyses revealed the formation of dimers, hydroxylated, and quinoneimine species, and glutathione (GSH) conjugates. EPR spin trapping with DMPO using GSH revealed that fenamic acids produced glutathionyl radicals in a concentration-dependent manner. We also detected the formation of protein-free radicals in HL-60 cells, which correlated with cytotoxicity. Despite the minor structural differences between the fenamic acids, there were variations in their oxidation potential. These findings revealed a correlation between pro-oxidant metabolite reactivity and cytotoxicity caused by fenamic acid NSAIDs.</p></div>","PeriodicalId":101065,"journal":{"name":"Redox Biochemistry and Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The oxidation of fenamic acid NSAIDs by neutrophil myeloperoxidase produces toxic reactive metabolites that induce leukemic cell death\",\"authors\":\"Newton H. Tran ,&nbsp;Dinesh Babu ,&nbsp;Steven Lockhart ,&nbsp;Andrew G. Morgan ,&nbsp;Nadine Commandeur ,&nbsp;Md Harunur Rashid ,&nbsp;Béla Reiz ,&nbsp;Lusine Tonoyan ,&nbsp;Arno G. Siraki\",\"doi\":\"10.1016/j.rbc.2023.100013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fenamic acids are a group of non-steroidal anti-inflammatory drugs (NSAIDs) that are among the most common drugs prescribed globally. However, they have been associated with many adverse effects, such as agranulocytosis, neutropenia, hepatotoxicity, and nephrotoxicity. The interactions between peroxidase enzymes and fenamic acid-like NSAIDs cause the formation of reactive species, potentially involved in side effects. The aim of this study was to investigate the neutrophil myeloperoxidase (MPO)-mediated bioactivation of fenamic acids based on N-phenylanthranilic acid (NPA) and its four drug analogues: flufenamic acid (FFA), mefenamic acid (MFA), meclofenamic acid (MCFA), and tolfenamic acid (TFA). We hypothesized that the enzymatic oxidation of fenamic acids by MPO/hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) would produce reactive metabolites, cause oxidative damage and induce cytotoxicity. We utilized UV–Vis spectrophotometry, liquid chromatography-mass spectrometry (LC-MS), and electron paramagnetic spin resonance (EPR) spectroscopy using purified MPO from human neutrophils. In addition, <em>in vitro</em> studies were performed with MPO-containing human promyelocytic leukemia (HL-60) cells for cytotoxicity and immuno-spin trapping to detect protein-free radicals. UV–Vis spectrophotometry revealed that MPO oxidized the fenamic acids. LC-MS analyses revealed the formation of dimers, hydroxylated, and quinoneimine species, and glutathione (GSH) conjugates. EPR spin trapping with DMPO using GSH revealed that fenamic acids produced glutathionyl radicals in a concentration-dependent manner. We also detected the formation of protein-free radicals in HL-60 cells, which correlated with cytotoxicity. Despite the minor structural differences between the fenamic acids, there were variations in their oxidation potential. These findings revealed a correlation between pro-oxidant metabolite reactivity and cytotoxicity caused by fenamic acid NSAIDs.</p></div>\",\"PeriodicalId\":101065,\"journal\":{\"name\":\"Redox Biochemistry and Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Biochemistry and Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773176623000123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biochemistry and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773176623000123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

芬太尼酸是一组非甾体抗炎药,是全球最常见的处方药之一。然而,它们与许多不良反应有关,如粒细胞缺乏症、中性粒细胞减少症、肝毒性和肾毒性。过氧化物酶和非那米酸类非甾体抗炎药之间的相互作用导致活性物质的形成,可能涉及副作用。本研究的目的是研究中性粒细胞髓过氧化物酶(MPO)介导的基于N-苯基邻苯二甲酸(NPA)及其四种药物类似物:氟非那胺酸(FFA)、甲非那酰胺酸(MFA)、甲氯芬酸(MCFA)和托非那胺酸(TFA)的非那胺酸类生物活性。我们假设MPO/过氧化氢(H2O2)对酚胺酸的酶促氧化会产生反应性代谢产物,引起氧化损伤并诱导细胞毒性。我们使用来自人类中性粒细胞的纯化MPO,利用紫外-可见分光光度法、液相色谱-质谱法(LC-MS)和电子顺磁自旋共振(EPR)光谱法。此外,对含有MPO的人早幼粒细胞白血病(HL-60)细胞进行了细胞毒性和免疫自旋捕获以检测蛋白质自由基的体外研究。紫外-可见分光光度法显示MPO氧化了酚胺酸。LC-MS分析揭示了二聚体、羟基化物和喹啉类物质以及谷胱甘肽(GSH)缀合物的形成。使用GSH用DMPO进行EPR自旋捕获表明,酚胺酸以浓度依赖的方式产生谷胱甘肽自由基。我们还检测到HL-60细胞中蛋白质自由基的形成,这与细胞毒性有关。尽管芬那米酸之间存在微小的结构差异,但它们的氧化电位存在差异。这些发现揭示了促氧化代谢产物的反应性与非那米酸非甾体抗炎药引起的细胞毒性之间的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The oxidation of fenamic acid NSAIDs by neutrophil myeloperoxidase produces toxic reactive metabolites that induce leukemic cell death

The oxidation of fenamic acid NSAIDs by neutrophil myeloperoxidase produces toxic reactive metabolites that induce leukemic cell death

Fenamic acids are a group of non-steroidal anti-inflammatory drugs (NSAIDs) that are among the most common drugs prescribed globally. However, they have been associated with many adverse effects, such as agranulocytosis, neutropenia, hepatotoxicity, and nephrotoxicity. The interactions between peroxidase enzymes and fenamic acid-like NSAIDs cause the formation of reactive species, potentially involved in side effects. The aim of this study was to investigate the neutrophil myeloperoxidase (MPO)-mediated bioactivation of fenamic acids based on N-phenylanthranilic acid (NPA) and its four drug analogues: flufenamic acid (FFA), mefenamic acid (MFA), meclofenamic acid (MCFA), and tolfenamic acid (TFA). We hypothesized that the enzymatic oxidation of fenamic acids by MPO/hydrogen peroxide (H2O2) would produce reactive metabolites, cause oxidative damage and induce cytotoxicity. We utilized UV–Vis spectrophotometry, liquid chromatography-mass spectrometry (LC-MS), and electron paramagnetic spin resonance (EPR) spectroscopy using purified MPO from human neutrophils. In addition, in vitro studies were performed with MPO-containing human promyelocytic leukemia (HL-60) cells for cytotoxicity and immuno-spin trapping to detect protein-free radicals. UV–Vis spectrophotometry revealed that MPO oxidized the fenamic acids. LC-MS analyses revealed the formation of dimers, hydroxylated, and quinoneimine species, and glutathione (GSH) conjugates. EPR spin trapping with DMPO using GSH revealed that fenamic acids produced glutathionyl radicals in a concentration-dependent manner. We also detected the formation of protein-free radicals in HL-60 cells, which correlated with cytotoxicity. Despite the minor structural differences between the fenamic acids, there were variations in their oxidation potential. These findings revealed a correlation between pro-oxidant metabolite reactivity and cytotoxicity caused by fenamic acid NSAIDs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信