Shuai Dong , Yuetong Sun , Chang Liu , Yanli Li , Shanshan Yu , Qi Zhang , Yan Xu
{"title":"多能干细胞心脏分化过程中m6A RNA甲基化的阶段特异性需求","authors":"Shuai Dong , Yuetong Sun , Chang Liu , Yanli Li , Shanshan Yu , Qi Zhang , Yan Xu","doi":"10.1016/j.diff.2023.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>Precise spatiotemporal control of gene expression patterns is critical for normal development. Pluripotent stem cells, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), with the ability of unlimited self-renewal and differentiation into any cell type, provide a unique tool for understanding the underlying mechanism of development and disease in a dish. N6-methyl-adenosine (m<sup>6</sup>A) modification is the most extensive internal mRNA modification, which regulates almost all aspects of mRNA metabolism and thus extensively participates in gene expression regulation. However, the role of m<sup>6</sup>A during cardiogenesis still needs to be fully elucidated. Here, we found that core components of m<sup>6</sup>A methyltransferase decreased during cardiomyocyte differentiation. Impeding m<sup>6</sup>A deposition, by either deleting the m<sup>6</sup>A methyltransferase Mettl3 or overexpressing m<sup>6</sup>A demethylase alkB homolog 5 (Alkbh5), at early stages of cardiac differentiation of mouse pluripotent stem cells, led to inhibition of cardiac gene activation and retardation of the outgrowth of embryoid bodies, whereas interfering m<sup>6</sup>A modification at later stages of differentiation had minimal effects. Consistently, stage-specific inhibition of METTL3 with METTL3 inhibitor STM2457 during human ESCs (hESCs) cardiac differentiation demonstrated a similarly pivotal role of METTL3 for the induction of mesodermal cells while dispensable function for later stages. In summary, our study reveals a stage-specific requirement of m<sup>6</sup>A on the cardiac differentiation of pluripotent stem cells and demonstrates that precise tuning of m<sup>6</sup>A level is critical for cardiac differentiation.</p></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stage-specific requirement for m6A RNA methylation during cardiac differentiation of pluripotent stem cells\",\"authors\":\"Shuai Dong , Yuetong Sun , Chang Liu , Yanli Li , Shanshan Yu , Qi Zhang , Yan Xu\",\"doi\":\"10.1016/j.diff.2023.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Precise spatiotemporal control of gene expression patterns is critical for normal development. Pluripotent stem cells, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), with the ability of unlimited self-renewal and differentiation into any cell type, provide a unique tool for understanding the underlying mechanism of development and disease in a dish. N6-methyl-adenosine (m<sup>6</sup>A) modification is the most extensive internal mRNA modification, which regulates almost all aspects of mRNA metabolism and thus extensively participates in gene expression regulation. However, the role of m<sup>6</sup>A during cardiogenesis still needs to be fully elucidated. Here, we found that core components of m<sup>6</sup>A methyltransferase decreased during cardiomyocyte differentiation. Impeding m<sup>6</sup>A deposition, by either deleting the m<sup>6</sup>A methyltransferase Mettl3 or overexpressing m<sup>6</sup>A demethylase alkB homolog 5 (Alkbh5), at early stages of cardiac differentiation of mouse pluripotent stem cells, led to inhibition of cardiac gene activation and retardation of the outgrowth of embryoid bodies, whereas interfering m<sup>6</sup>A modification at later stages of differentiation had minimal effects. Consistently, stage-specific inhibition of METTL3 with METTL3 inhibitor STM2457 during human ESCs (hESCs) cardiac differentiation demonstrated a similarly pivotal role of METTL3 for the induction of mesodermal cells while dispensable function for later stages. In summary, our study reveals a stage-specific requirement of m<sup>6</sup>A on the cardiac differentiation of pluripotent stem cells and demonstrates that precise tuning of m<sup>6</sup>A level is critical for cardiac differentiation.</p></div>\",\"PeriodicalId\":50579,\"journal\":{\"name\":\"Differentiation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differentiation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301468123000531\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differentiation","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301468123000531","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Stage-specific requirement for m6A RNA methylation during cardiac differentiation of pluripotent stem cells
Precise spatiotemporal control of gene expression patterns is critical for normal development. Pluripotent stem cells, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), with the ability of unlimited self-renewal and differentiation into any cell type, provide a unique tool for understanding the underlying mechanism of development and disease in a dish. N6-methyl-adenosine (m6A) modification is the most extensive internal mRNA modification, which regulates almost all aspects of mRNA metabolism and thus extensively participates in gene expression regulation. However, the role of m6A during cardiogenesis still needs to be fully elucidated. Here, we found that core components of m6A methyltransferase decreased during cardiomyocyte differentiation. Impeding m6A deposition, by either deleting the m6A methyltransferase Mettl3 or overexpressing m6A demethylase alkB homolog 5 (Alkbh5), at early stages of cardiac differentiation of mouse pluripotent stem cells, led to inhibition of cardiac gene activation and retardation of the outgrowth of embryoid bodies, whereas interfering m6A modification at later stages of differentiation had minimal effects. Consistently, stage-specific inhibition of METTL3 with METTL3 inhibitor STM2457 during human ESCs (hESCs) cardiac differentiation demonstrated a similarly pivotal role of METTL3 for the induction of mesodermal cells while dispensable function for later stages. In summary, our study reveals a stage-specific requirement of m6A on the cardiac differentiation of pluripotent stem cells and demonstrates that precise tuning of m6A level is critical for cardiac differentiation.
期刊介绍:
Differentiation is a multidisciplinary journal dealing with topics relating to cell differentiation, development, cellular structure and function, and cancer. Differentiation of eukaryotes at the molecular level and the use of transgenic and targeted mutagenesis approaches to problems of differentiation are of particular interest to the journal.
The journal will publish full-length articles containing original work in any of these areas. We will also publish reviews and commentaries on topics of current interest.
The principal subject areas the journal covers are: • embryonic patterning and organogenesis
• human development and congenital malformation
• mechanisms of cell lineage commitment
• tissue homeostasis and oncogenic transformation
• establishment of cellular polarity
• stem cell differentiation
• cell reprogramming mechanisms
• stability of the differentiated state
• cell and tissue interactions in vivo and in vitro
• signal transduction pathways in development and differentiation
• carcinogenesis and cancer
• mechanisms involved in cell growth and division especially relating to cancer
• differentiation in regeneration and ageing
• therapeutic applications of differentiation processes.