{"title":"摩擦电器件用SnO2薄膜的Ag种子层效应","authors":"E. Yüzüak , G. Durak Yüzüak","doi":"10.1016/j.elstat.2023.103855","DOIUrl":null,"url":null,"abstract":"<div><p><span>Materials with triboelectric properties are critical to boosting the efficiency of triboelectric nanogenerators (TENG) by gathering power from waste force and mechanical movement. In this study, we explored tin-oxide (SnO</span><sub>2</sub><span><span><span><span>) thin films<span> with silver (Ag) seed layer properties for </span></span>friction surfaces at TENGs. Investigation of the triboelectric behavior of semi-conductor/polymer coupling structured TENGs formed by thin films with and without Ag seed layer after heat treatment was explored by X-ray diffraction (XRD), </span>electron microscopy<span> (SEM), atomic force microscopy (AFM), and semi-logarithmic current-voltage measurements. Similar structural characterization studies were carried out in </span></span>indium tin oxide<span> coated polyethylene terephthalate film (PET/ITO) for the polymer friction layer. Semiconductor/polymer coupling structured TENG efficiency was evaluated in contact-separation mode and the output voltage-current was enhanced to 80 V, 4 μA, and 210 μW of output power calculated by depositing a SnO</span></span><sub>2</sub> thin film on an Ag seed layer, respectively. Our findings offer a different perspective for synthesizing the semi-conductor/polymer coupling structured TENGs for promising applications in a range of application technologies.</p></div>","PeriodicalId":54842,"journal":{"name":"Journal of Electrostatics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ag seed layer effects on SnO2 thin films for triboelectric devices\",\"authors\":\"E. Yüzüak , G. Durak Yüzüak\",\"doi\":\"10.1016/j.elstat.2023.103855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Materials with triboelectric properties are critical to boosting the efficiency of triboelectric nanogenerators (TENG) by gathering power from waste force and mechanical movement. In this study, we explored tin-oxide (SnO</span><sub>2</sub><span><span><span><span>) thin films<span> with silver (Ag) seed layer properties for </span></span>friction surfaces at TENGs. Investigation of the triboelectric behavior of semi-conductor/polymer coupling structured TENGs formed by thin films with and without Ag seed layer after heat treatment was explored by X-ray diffraction (XRD), </span>electron microscopy<span> (SEM), atomic force microscopy (AFM), and semi-logarithmic current-voltage measurements. Similar structural characterization studies were carried out in </span></span>indium tin oxide<span> coated polyethylene terephthalate film (PET/ITO) for the polymer friction layer. Semiconductor/polymer coupling structured TENG efficiency was evaluated in contact-separation mode and the output voltage-current was enhanced to 80 V, 4 μA, and 210 μW of output power calculated by depositing a SnO</span></span><sub>2</sub> thin film on an Ag seed layer, respectively. Our findings offer a different perspective for synthesizing the semi-conductor/polymer coupling structured TENGs for promising applications in a range of application technologies.</p></div>\",\"PeriodicalId\":54842,\"journal\":{\"name\":\"Journal of Electrostatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrostatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304388623000645\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrostatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304388623000645","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Ag seed layer effects on SnO2 thin films for triboelectric devices
Materials with triboelectric properties are critical to boosting the efficiency of triboelectric nanogenerators (TENG) by gathering power from waste force and mechanical movement. In this study, we explored tin-oxide (SnO2) thin films with silver (Ag) seed layer properties for friction surfaces at TENGs. Investigation of the triboelectric behavior of semi-conductor/polymer coupling structured TENGs formed by thin films with and without Ag seed layer after heat treatment was explored by X-ray diffraction (XRD), electron microscopy (SEM), atomic force microscopy (AFM), and semi-logarithmic current-voltage measurements. Similar structural characterization studies were carried out in indium tin oxide coated polyethylene terephthalate film (PET/ITO) for the polymer friction layer. Semiconductor/polymer coupling structured TENG efficiency was evaluated in contact-separation mode and the output voltage-current was enhanced to 80 V, 4 μA, and 210 μW of output power calculated by depositing a SnO2 thin film on an Ag seed layer, respectively. Our findings offer a different perspective for synthesizing the semi-conductor/polymer coupling structured TENGs for promising applications in a range of application technologies.
期刊介绍:
The Journal of Electrostatics is the leading forum for publishing research findings that advance knowledge in the field of electrostatics. We invite submissions in the following areas:
Electrostatic charge separation processes.
Electrostatic manipulation of particles, droplets, and biological cells.
Electrostatically driven or controlled fluid flow.
Electrostatics in the gas phase.