Sebastian Berndt , Leah Epstein , Klaus Jansen , Asaf Levin , Marten Maack , Lars Rohwedder
{"title":"具有有限迁移的在线垃圾箱覆盖","authors":"Sebastian Berndt , Leah Epstein , Klaus Jansen , Asaf Levin , Marten Maack , Lars Rohwedder","doi":"10.1016/j.jcss.2023.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>Semi-online models where decisions may be revoked in a limited way have been studied extensively in the last years. A well-studied measure of the amount of decisions that can be revoked is the (constant) migration factor. When an object arrives, the decisions for objects of total size at most the migration factor times its size may be revoked. This means that a small object only leads to small changes. We extensively study the bin covering problem with migration in different scenarios. We develop algorithms both for the static case where only insertions are allowed, and for the dynamic case, where items may also depart. We also develop lower bounds for these scenarios both for amortized migration and for worst-case migration showing that our algorithms have nearly optimal migration factor and asymptotic competitive ratio. We therefore resolve the competitiveness of the bin covering problem with migration.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"134 ","pages":"Pages 42-72"},"PeriodicalIF":1.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online bin covering with limited migration\",\"authors\":\"Sebastian Berndt , Leah Epstein , Klaus Jansen , Asaf Levin , Marten Maack , Lars Rohwedder\",\"doi\":\"10.1016/j.jcss.2023.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Semi-online models where decisions may be revoked in a limited way have been studied extensively in the last years. A well-studied measure of the amount of decisions that can be revoked is the (constant) migration factor. When an object arrives, the decisions for objects of total size at most the migration factor times its size may be revoked. This means that a small object only leads to small changes. We extensively study the bin covering problem with migration in different scenarios. We develop algorithms both for the static case where only insertions are allowed, and for the dynamic case, where items may also depart. We also develop lower bounds for these scenarios both for amortized migration and for worst-case migration showing that our algorithms have nearly optimal migration factor and asymptotic competitive ratio. We therefore resolve the competitiveness of the bin covering problem with migration.</p></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"134 \",\"pages\":\"Pages 42-72\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000023000089\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000023000089","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Semi-online models where decisions may be revoked in a limited way have been studied extensively in the last years. A well-studied measure of the amount of decisions that can be revoked is the (constant) migration factor. When an object arrives, the decisions for objects of total size at most the migration factor times its size may be revoked. This means that a small object only leads to small changes. We extensively study the bin covering problem with migration in different scenarios. We develop algorithms both for the static case where only insertions are allowed, and for the dynamic case, where items may also depart. We also develop lower bounds for these scenarios both for amortized migration and for worst-case migration showing that our algorithms have nearly optimal migration factor and asymptotic competitive ratio. We therefore resolve the competitiveness of the bin covering problem with migration.
期刊介绍:
The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions.
Research areas include traditional subjects such as:
• Theory of algorithms and computability
• Formal languages
• Automata theory
Contemporary subjects such as:
• Complexity theory
• Algorithmic Complexity
• Parallel & distributed computing
• Computer networks
• Neural networks
• Computational learning theory
• Database theory & practice
• Computer modeling of complex systems
• Security and Privacy.