Yu Zhang , Mengmeng Du , Yingxin Ma , Jian Shang , Bocheng Qiu
{"title":"尖晶石氧化物中双交换作用的价态工程用于增强析氧催化","authors":"Yu Zhang , Mengmeng Du , Yingxin Ma , Jian Shang , Bocheng Qiu","doi":"10.1016/j.mtcata.2023.100027","DOIUrl":null,"url":null,"abstract":"<div><p>The design of spinel-oxide-based catalysts with high activity and long-term durability for oxygen evolution reaction (OER) confronts grand challenges that may be well tackled by maneuvering the electronic structure of surface catalytic sites within spinel oxides. Herein, we harness a double exchange interaction (DEI) triggered by the synergistic effects of Schottky junction and oxygen vacancies (V<sub>O</sub>) to generate high proportions of octahedrally coordinated Ni<sup>3+</sup> and Co<sup>2+</sup> (highly active sites) in the edge-sharing [Ni<sub>x</sub>Co<sub>1−X</sub>O<sub>6</sub>] octahedra. Specifically, Schottky junction is formed between metallic Cu nanowires and semiconducting NiCo<sub>2</sub>O<sub>4</sub> via a core-shell structure, and abundant V<sub>O</sub> sites are created in NiCo<sub>2</sub>O<sub>4</sub> via H<sub>2</sub> thermal treatment. As expected, the Cu@V<sub>O</sub>-NiCo<sub>2</sub>O<sub>4</sub> electrocatalyst allows a significantly boosted OER performance, with a low overpotential of 214 mV at 10 mA cm<sup>-2</sup> and a small Tafel slope of 64.9 mV dec<sup>-1</sup>, which outperforms the state-of-the-art RuO<sub>2</sub> catalyst and most of reported Ni-Co based OER catalysts. Our work provides some inspirations for designing high-performance spinel-oxide-based electrocatalysts towards OER via DEI engineering.</p></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"3 ","pages":"Article 100027"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Valence engineering via double exchange interaction in spinel oxides for enhanced oxygen evolution catalysis\",\"authors\":\"Yu Zhang , Mengmeng Du , Yingxin Ma , Jian Shang , Bocheng Qiu\",\"doi\":\"10.1016/j.mtcata.2023.100027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The design of spinel-oxide-based catalysts with high activity and long-term durability for oxygen evolution reaction (OER) confronts grand challenges that may be well tackled by maneuvering the electronic structure of surface catalytic sites within spinel oxides. Herein, we harness a double exchange interaction (DEI) triggered by the synergistic effects of Schottky junction and oxygen vacancies (V<sub>O</sub>) to generate high proportions of octahedrally coordinated Ni<sup>3+</sup> and Co<sup>2+</sup> (highly active sites) in the edge-sharing [Ni<sub>x</sub>Co<sub>1−X</sub>O<sub>6</sub>] octahedra. Specifically, Schottky junction is formed between metallic Cu nanowires and semiconducting NiCo<sub>2</sub>O<sub>4</sub> via a core-shell structure, and abundant V<sub>O</sub> sites are created in NiCo<sub>2</sub>O<sub>4</sub> via H<sub>2</sub> thermal treatment. As expected, the Cu@V<sub>O</sub>-NiCo<sub>2</sub>O<sub>4</sub> electrocatalyst allows a significantly boosted OER performance, with a low overpotential of 214 mV at 10 mA cm<sup>-2</sup> and a small Tafel slope of 64.9 mV dec<sup>-1</sup>, which outperforms the state-of-the-art RuO<sub>2</sub> catalyst and most of reported Ni-Co based OER catalysts. Our work provides some inspirations for designing high-performance spinel-oxide-based electrocatalysts towards OER via DEI engineering.</p></div>\",\"PeriodicalId\":100892,\"journal\":{\"name\":\"Materials Today Catalysis\",\"volume\":\"3 \",\"pages\":\"Article 100027\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949754X23000273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949754X23000273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Valence engineering via double exchange interaction in spinel oxides for enhanced oxygen evolution catalysis
The design of spinel-oxide-based catalysts with high activity and long-term durability for oxygen evolution reaction (OER) confronts grand challenges that may be well tackled by maneuvering the electronic structure of surface catalytic sites within spinel oxides. Herein, we harness a double exchange interaction (DEI) triggered by the synergistic effects of Schottky junction and oxygen vacancies (VO) to generate high proportions of octahedrally coordinated Ni3+ and Co2+ (highly active sites) in the edge-sharing [NixCo1−XO6] octahedra. Specifically, Schottky junction is formed between metallic Cu nanowires and semiconducting NiCo2O4 via a core-shell structure, and abundant VO sites are created in NiCo2O4 via H2 thermal treatment. As expected, the Cu@VO-NiCo2O4 electrocatalyst allows a significantly boosted OER performance, with a low overpotential of 214 mV at 10 mA cm-2 and a small Tafel slope of 64.9 mV dec-1, which outperforms the state-of-the-art RuO2 catalyst and most of reported Ni-Co based OER catalysts. Our work provides some inspirations for designing high-performance spinel-oxide-based electrocatalysts towards OER via DEI engineering.