通过大数据分析对新出现的真菌病原体进行计算机环境采样

IF 1.9 3区 环境科学与生态学 Q3 ECOLOGY
Laszlo Irinyi , Michael Roper , Richard Malik , Wieland Meyer
{"title":"通过大数据分析对新出现的真菌病原体进行计算机环境采样","authors":"Laszlo Irinyi ,&nbsp;Michael Roper ,&nbsp;Richard Malik ,&nbsp;Wieland Meyer","doi":"10.1016/j.funeco.2022.101212","DOIUrl":null,"url":null,"abstract":"<div><p>Yeast species in the <em>Candida haemulonii</em> complex (<em>C. haemulonii</em>, <em>C. haemulonii</em> var. <em>vulnera</em>, <em>C. duobushaemulonii</em>, <em>C. pseudohaemulonii</em>, and <em>C. vulturna</em>) and closely related species (<em>C. auris</em>, <em>C. heveicola</em>, and <em>C. ruelliae</em>) are of significant public health concern worldwide. Little is known about their natural habitat. To understand the worldwide emergence of new fungal pathogens, it is important to identify key environmental habitats. Showing the effectiveness of the primary fungal DNA barcode and leveraging big data archived in the Sequence Read Archive (SRA) database enabled the identification of novel reservoirs over a wide range of geographical areas for those yeasts. We identified 1209 datasets corresponding to species in the <em>C. haemulonii</em> complex and three closely related species. Our results imply that climate change is not the main driver for the emergence of pathogenic multidrug-resistant yeast species. This approach opens the door for further big data analysis using the accessible resources of such databases.</p></div>","PeriodicalId":55136,"journal":{"name":"Fungal Ecology","volume":"62 ","pages":"Article 101212"},"PeriodicalIF":1.9000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"In silico environmental sampling of emerging fungal pathogens via big data analysis\",\"authors\":\"Laszlo Irinyi ,&nbsp;Michael Roper ,&nbsp;Richard Malik ,&nbsp;Wieland Meyer\",\"doi\":\"10.1016/j.funeco.2022.101212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Yeast species in the <em>Candida haemulonii</em> complex (<em>C. haemulonii</em>, <em>C. haemulonii</em> var. <em>vulnera</em>, <em>C. duobushaemulonii</em>, <em>C. pseudohaemulonii</em>, and <em>C. vulturna</em>) and closely related species (<em>C. auris</em>, <em>C. heveicola</em>, and <em>C. ruelliae</em>) are of significant public health concern worldwide. Little is known about their natural habitat. To understand the worldwide emergence of new fungal pathogens, it is important to identify key environmental habitats. Showing the effectiveness of the primary fungal DNA barcode and leveraging big data archived in the Sequence Read Archive (SRA) database enabled the identification of novel reservoirs over a wide range of geographical areas for those yeasts. We identified 1209 datasets corresponding to species in the <em>C. haemulonii</em> complex and three closely related species. Our results imply that climate change is not the main driver for the emergence of pathogenic multidrug-resistant yeast species. This approach opens the door for further big data analysis using the accessible resources of such databases.</p></div>\",\"PeriodicalId\":55136,\"journal\":{\"name\":\"Fungal Ecology\",\"volume\":\"62 \",\"pages\":\"Article 101212\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1754504822000733\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Ecology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1754504822000733","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

哈氏假丝酵母复合体中的酵母物种(哈氏假假丝酵母、假丝酵母和假丝酵母)和密切相关的物种(auris假丝酵母(C.auris)、heveicola假丝酵母以及Ruellia假丝酵母,在世界范围内引起了重大的公共卫生关注。人们对它们的自然栖息地知之甚少。为了了解新的真菌病原体在世界范围内的出现,确定关键的环境栖息地是很重要的。显示主要真菌DNA条形码的有效性,并利用序列读取档案(SRA)数据库中存档的大数据,能够在广泛的地理区域内识别出这些酵母的新储层。我们确定了1209个数据集,这些数据集对应于C.haemuloni复合体中的物种和三个密切相关的物种。我们的研究结果表明,气候变化不是致病性耐多药酵母出现的主要驱动因素。这种方法为利用此类数据库的可访问资源进行进一步的大数据分析打开了大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In silico environmental sampling of emerging fungal pathogens via big data analysis

Yeast species in the Candida haemulonii complex (C. haemulonii, C. haemulonii var. vulnera, C. duobushaemulonii, C. pseudohaemulonii, and C. vulturna) and closely related species (C. auris, C. heveicola, and C. ruelliae) are of significant public health concern worldwide. Little is known about their natural habitat. To understand the worldwide emergence of new fungal pathogens, it is important to identify key environmental habitats. Showing the effectiveness of the primary fungal DNA barcode and leveraging big data archived in the Sequence Read Archive (SRA) database enabled the identification of novel reservoirs over a wide range of geographical areas for those yeasts. We identified 1209 datasets corresponding to species in the C. haemulonii complex and three closely related species. Our results imply that climate change is not the main driver for the emergence of pathogenic multidrug-resistant yeast species. This approach opens the door for further big data analysis using the accessible resources of such databases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fungal Ecology
Fungal Ecology 环境科学-生态学
CiteScore
5.80
自引率
3.40%
发文量
51
审稿时长
3 months
期刊介绍: Fungal Ecology publishes investigations into all aspects of fungal ecology, including the following (not exclusive): population dynamics; adaptation; evolution; role in ecosystem functioning, nutrient cycling, decomposition, carbon allocation; ecophysiology; intra- and inter-specific mycelial interactions, fungus-plant (pathogens, mycorrhizas, lichens, endophytes), fungus-invertebrate and fungus-microbe interaction; genomics and (evolutionary) genetics; conservation and biodiversity; remote sensing; bioremediation and biodegradation; quantitative and computational aspects - modelling, indicators, complexity, informatics. The usual prerequisites for publication will be originality, clarity, and significance as relevant to a better understanding of the ecology of fungi.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信