{"title":"基于ERL滑模控制器的四旋翼递阶摄动补偿系统","authors":"Walid Alqaisi , Brahim Brahmi , Jawhar Ghommam , Maarouf Saad , Vahé Nerguizian","doi":"10.1016/j.ifacsc.2023.100232","DOIUrl":null,"url":null,"abstract":"<div><p><span>This article addresses the problem of perturbation in Unmanned Air Vehicle (UAV) quadrotors. Three subsystems are designed to provide a continuous and precise estimation of perturbation and residual perturbation. The three subsystems form a Hierarchical Perturbation Compensator (HPC), which is built to compensate for system dynamics<span><span> uncertainties, non-modeled dynamics, and external disturbances. The </span>nonlinear control Exponential Reaching Law Sliding Mode (ERLSM) is utilized with the HPC. </span></span>Lyapunov stability analysis proves the stability of the entire compensator-controller system. This system has the ability to decrease unknown perturbation either external or internal. It also has the ability to maintain full control of the six-degree-of-freedom quadrotor. The system performance for position, altitude, and attitude control is demonstrated by analysis, simulation, and experiments.</p></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"26 ","pages":"Article 100232"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical perturbation compensation system with ERL sliding mode controller in a quadrotor\",\"authors\":\"Walid Alqaisi , Brahim Brahmi , Jawhar Ghommam , Maarouf Saad , Vahé Nerguizian\",\"doi\":\"10.1016/j.ifacsc.2023.100232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>This article addresses the problem of perturbation in Unmanned Air Vehicle (UAV) quadrotors. Three subsystems are designed to provide a continuous and precise estimation of perturbation and residual perturbation. The three subsystems form a Hierarchical Perturbation Compensator (HPC), which is built to compensate for system dynamics<span><span> uncertainties, non-modeled dynamics, and external disturbances. The </span>nonlinear control Exponential Reaching Law Sliding Mode (ERLSM) is utilized with the HPC. </span></span>Lyapunov stability analysis proves the stability of the entire compensator-controller system. This system has the ability to decrease unknown perturbation either external or internal. It also has the ability to maintain full control of the six-degree-of-freedom quadrotor. The system performance for position, altitude, and attitude control is demonstrated by analysis, simulation, and experiments.</p></div>\",\"PeriodicalId\":29926,\"journal\":{\"name\":\"IFAC Journal of Systems and Control\",\"volume\":\"26 \",\"pages\":\"Article 100232\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Journal of Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468601823000184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601823000184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Hierarchical perturbation compensation system with ERL sliding mode controller in a quadrotor
This article addresses the problem of perturbation in Unmanned Air Vehicle (UAV) quadrotors. Three subsystems are designed to provide a continuous and precise estimation of perturbation and residual perturbation. The three subsystems form a Hierarchical Perturbation Compensator (HPC), which is built to compensate for system dynamics uncertainties, non-modeled dynamics, and external disturbances. The nonlinear control Exponential Reaching Law Sliding Mode (ERLSM) is utilized with the HPC. Lyapunov stability analysis proves the stability of the entire compensator-controller system. This system has the ability to decrease unknown perturbation either external or internal. It also has the ability to maintain full control of the six-degree-of-freedom quadrotor. The system performance for position, altitude, and attitude control is demonstrated by analysis, simulation, and experiments.