Nil Llisterri Giménez, Joan Miquel Solé, Felix Freitag
{"title":"基于LoRa网状网络的嵌入式联邦学习","authors":"Nil Llisterri Giménez, Joan Miquel Solé, Felix Freitag","doi":"10.1016/j.pmcj.2023.101819","DOIUrl":null,"url":null,"abstract":"<div><p>In on-device training of machine learning models on microcontrollers a neural network is trained on the device. A specific approach for collaborative on-device training is federated learning. In this paper, we propose embedded federated learning on microcontroller boards using the communication capacity of a LoRa mesh network. We apply a dual board design: The machine learning application that contains a neural network is trained for a keyword spotting task on the Arduino Portenta H7. For the networking of the federated learning process, the Portenta is connected to a TTGO LORA32 board that operates as a router within a LoRa mesh network. We experiment the federated learning application on the LoRa mesh network and analyze the network, system, and application level performance. The results from our experimentation suggest the feasibility of the proposed system and exemplify an implementation of a distributed application with re-trainable compute nodes, interconnected over LoRa, entirely deployed at the tiny edge.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"93 ","pages":"Article 101819"},"PeriodicalIF":3.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Embedded federated learning over a LoRa mesh network\",\"authors\":\"Nil Llisterri Giménez, Joan Miquel Solé, Felix Freitag\",\"doi\":\"10.1016/j.pmcj.2023.101819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In on-device training of machine learning models on microcontrollers a neural network is trained on the device. A specific approach for collaborative on-device training is federated learning. In this paper, we propose embedded federated learning on microcontroller boards using the communication capacity of a LoRa mesh network. We apply a dual board design: The machine learning application that contains a neural network is trained for a keyword spotting task on the Arduino Portenta H7. For the networking of the federated learning process, the Portenta is connected to a TTGO LORA32 board that operates as a router within a LoRa mesh network. We experiment the federated learning application on the LoRa mesh network and analyze the network, system, and application level performance. The results from our experimentation suggest the feasibility of the proposed system and exemplify an implementation of a distributed application with re-trainable compute nodes, interconnected over LoRa, entirely deployed at the tiny edge.</p></div>\",\"PeriodicalId\":49005,\"journal\":{\"name\":\"Pervasive and Mobile Computing\",\"volume\":\"93 \",\"pages\":\"Article 101819\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pervasive and Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574119223000779\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119223000779","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Embedded federated learning over a LoRa mesh network
In on-device training of machine learning models on microcontrollers a neural network is trained on the device. A specific approach for collaborative on-device training is federated learning. In this paper, we propose embedded federated learning on microcontroller boards using the communication capacity of a LoRa mesh network. We apply a dual board design: The machine learning application that contains a neural network is trained for a keyword spotting task on the Arduino Portenta H7. For the networking of the federated learning process, the Portenta is connected to a TTGO LORA32 board that operates as a router within a LoRa mesh network. We experiment the federated learning application on the LoRa mesh network and analyze the network, system, and application level performance. The results from our experimentation suggest the feasibility of the proposed system and exemplify an implementation of a distributed application with re-trainable compute nodes, interconnected over LoRa, entirely deployed at the tiny edge.
期刊介绍:
As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies.
The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.