基于LoRa网状网络的嵌入式联邦学习

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Nil Llisterri Giménez, Joan Miquel Solé, Felix Freitag
{"title":"基于LoRa网状网络的嵌入式联邦学习","authors":"Nil Llisterri Giménez,&nbsp;Joan Miquel Solé,&nbsp;Felix Freitag","doi":"10.1016/j.pmcj.2023.101819","DOIUrl":null,"url":null,"abstract":"<div><p>In on-device training of machine learning models on microcontrollers a neural network is trained on the device. A specific approach for collaborative on-device training is federated learning. In this paper, we propose embedded federated learning on microcontroller boards using the communication capacity of a LoRa mesh network. We apply a dual board design: The machine learning application that contains a neural network is trained for a keyword spotting task on the Arduino Portenta H7. For the networking of the federated learning process, the Portenta is connected to a TTGO LORA32 board that operates as a router within a LoRa mesh network. We experiment the federated learning application on the LoRa mesh network and analyze the network, system, and application level performance. The results from our experimentation suggest the feasibility of the proposed system and exemplify an implementation of a distributed application with re-trainable compute nodes, interconnected over LoRa, entirely deployed at the tiny edge.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"93 ","pages":"Article 101819"},"PeriodicalIF":3.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Embedded federated learning over a LoRa mesh network\",\"authors\":\"Nil Llisterri Giménez,&nbsp;Joan Miquel Solé,&nbsp;Felix Freitag\",\"doi\":\"10.1016/j.pmcj.2023.101819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In on-device training of machine learning models on microcontrollers a neural network is trained on the device. A specific approach for collaborative on-device training is federated learning. In this paper, we propose embedded federated learning on microcontroller boards using the communication capacity of a LoRa mesh network. We apply a dual board design: The machine learning application that contains a neural network is trained for a keyword spotting task on the Arduino Portenta H7. For the networking of the federated learning process, the Portenta is connected to a TTGO LORA32 board that operates as a router within a LoRa mesh network. We experiment the federated learning application on the LoRa mesh network and analyze the network, system, and application level performance. The results from our experimentation suggest the feasibility of the proposed system and exemplify an implementation of a distributed application with re-trainable compute nodes, interconnected over LoRa, entirely deployed at the tiny edge.</p></div>\",\"PeriodicalId\":49005,\"journal\":{\"name\":\"Pervasive and Mobile Computing\",\"volume\":\"93 \",\"pages\":\"Article 101819\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pervasive and Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574119223000779\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119223000779","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

在微控制器上的机器学习模型的设备上训练中,在设备上训练神经网络。设备上协作训练的一种特定方法是联合学习。在本文中,我们提出了利用LoRa网状网络的通信能力在微控制器板上进行嵌入式联合学习。我们采用了双板设计:包含神经网络的机器学习应用程序在Arduino Portenta H7上进行关键词识别任务的训练。对于联合学习过程的联网,Portenta连接到TTGO LORA32板,该板作为LoRa网状网络中的路由器运行。我们在LoRa网状网络上对联合学习应用程序进行了实验,并分析了网络、系统和应用程序级别的性能。我们的实验结果表明了所提出的系统的可行性,并举例说明了分布式应用程序的实现,该应用程序具有可重新训练的计算节点,通过LoRa互连,完全部署在微小的边缘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedded federated learning over a LoRa mesh network

In on-device training of machine learning models on microcontrollers a neural network is trained on the device. A specific approach for collaborative on-device training is federated learning. In this paper, we propose embedded federated learning on microcontroller boards using the communication capacity of a LoRa mesh network. We apply a dual board design: The machine learning application that contains a neural network is trained for a keyword spotting task on the Arduino Portenta H7. For the networking of the federated learning process, the Portenta is connected to a TTGO LORA32 board that operates as a router within a LoRa mesh network. We experiment the federated learning application on the LoRa mesh network and analyze the network, system, and application level performance. The results from our experimentation suggest the feasibility of the proposed system and exemplify an implementation of a distributed application with re-trainable compute nodes, interconnected over LoRa, entirely deployed at the tiny edge.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pervasive and Mobile Computing
Pervasive and Mobile Computing COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
7.70
自引率
2.30%
发文量
80
审稿时长
68 days
期刊介绍: As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies. The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信