{"title":"SmartSPEC:生成可定制的、基于语义的智能空间数据集的框架","authors":"Andrew Chio , Daokun Jiang , Peeyush Gupta , Georgios Bouloukakis , Roberto Yus , Sharad Mehrotra , Nalini Venkatasubramanian","doi":"10.1016/j.pmcj.2023.101809","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents SmartSPEC, an approach to generate customizable synthetic smart space datasets using sensorized spaces in which people and events are embedded. Smart space datasets are critical to design, deploy and evaluate systems and applications under issues of heterogeneity, scalability and robustness, leading to cost-effective operation which improves the safety, comfort and convenience experienced by space occupants. However, many challenges exist in obtaining realistic smart space datasets for testing and validation, from a lack of fine-grained sensing to privacy/security concerns. SmartSPEC is a smart space simulator and data generator that leverages a semantic model augmented with user-defined constraints to represent important attributes, relationships, and external domain knowledge for a smart space. We employ machine learning (ML) approaches to extract relevant patterns from a sensorized space, which are used in an event-driven simulation strategy to generate realistic simulated data about the space (events, trajectories, sensor observation datasets, etc.). To evaluate the realism of the generated data, we develop a structured methodology and metrics to assess various aspects of smart space datasets, including trajectories of people and occupancy of spaces. Our experimental study looks at two real-world settings/datasets: an instrumented smart campus building and a city-wide GPS dataset. Our results show the realism of trajectories produced by SmartSPEC (<span><math><mrow><mn>1</mn><mo>.</mo><mn>4</mn><mi>x</mi></mrow></math></span> to <span><math><mrow><mn>4</mn><mo>.</mo><mn>4</mn><mi>x</mi></mrow></math></span> more realistic than the best synthetic data baseline when compared to real-world data, depending on the scenario and configuration), as well as sensor data derived from such trajectories which adhere to the underlying semantics of the smart space as compared to synthetic sensor data baselines, even under hypothetical changes.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SmartSPEC: A framework to generate customizable, semantics-based smart space datasets\",\"authors\":\"Andrew Chio , Daokun Jiang , Peeyush Gupta , Georgios Bouloukakis , Roberto Yus , Sharad Mehrotra , Nalini Venkatasubramanian\",\"doi\":\"10.1016/j.pmcj.2023.101809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents SmartSPEC, an approach to generate customizable synthetic smart space datasets using sensorized spaces in which people and events are embedded. Smart space datasets are critical to design, deploy and evaluate systems and applications under issues of heterogeneity, scalability and robustness, leading to cost-effective operation which improves the safety, comfort and convenience experienced by space occupants. However, many challenges exist in obtaining realistic smart space datasets for testing and validation, from a lack of fine-grained sensing to privacy/security concerns. SmartSPEC is a smart space simulator and data generator that leverages a semantic model augmented with user-defined constraints to represent important attributes, relationships, and external domain knowledge for a smart space. We employ machine learning (ML) approaches to extract relevant patterns from a sensorized space, which are used in an event-driven simulation strategy to generate realistic simulated data about the space (events, trajectories, sensor observation datasets, etc.). To evaluate the realism of the generated data, we develop a structured methodology and metrics to assess various aspects of smart space datasets, including trajectories of people and occupancy of spaces. Our experimental study looks at two real-world settings/datasets: an instrumented smart campus building and a city-wide GPS dataset. Our results show the realism of trajectories produced by SmartSPEC (<span><math><mrow><mn>1</mn><mo>.</mo><mn>4</mn><mi>x</mi></mrow></math></span> to <span><math><mrow><mn>4</mn><mo>.</mo><mn>4</mn><mi>x</mi></mrow></math></span> more realistic than the best synthetic data baseline when compared to real-world data, depending on the scenario and configuration), as well as sensor data derived from such trajectories which adhere to the underlying semantics of the smart space as compared to synthetic sensor data baselines, even under hypothetical changes.</p></div>\",\"PeriodicalId\":49005,\"journal\":{\"name\":\"Pervasive and Mobile Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pervasive and Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574119223000676\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119223000676","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
SmartSPEC: A framework to generate customizable, semantics-based smart space datasets
This paper presents SmartSPEC, an approach to generate customizable synthetic smart space datasets using sensorized spaces in which people and events are embedded. Smart space datasets are critical to design, deploy and evaluate systems and applications under issues of heterogeneity, scalability and robustness, leading to cost-effective operation which improves the safety, comfort and convenience experienced by space occupants. However, many challenges exist in obtaining realistic smart space datasets for testing and validation, from a lack of fine-grained sensing to privacy/security concerns. SmartSPEC is a smart space simulator and data generator that leverages a semantic model augmented with user-defined constraints to represent important attributes, relationships, and external domain knowledge for a smart space. We employ machine learning (ML) approaches to extract relevant patterns from a sensorized space, which are used in an event-driven simulation strategy to generate realistic simulated data about the space (events, trajectories, sensor observation datasets, etc.). To evaluate the realism of the generated data, we develop a structured methodology and metrics to assess various aspects of smart space datasets, including trajectories of people and occupancy of spaces. Our experimental study looks at two real-world settings/datasets: an instrumented smart campus building and a city-wide GPS dataset. Our results show the realism of trajectories produced by SmartSPEC ( to more realistic than the best synthetic data baseline when compared to real-world data, depending on the scenario and configuration), as well as sensor data derived from such trajectories which adhere to the underlying semantics of the smart space as compared to synthetic sensor data baselines, even under hypothetical changes.
期刊介绍:
As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies.
The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.