Tamoghna Ojha , Theofanis P. Raptis , Andrea Passarella , Marco Conti
{"title":"无人驾驶飞行器的无线电力传输:最新技术和公开挑战","authors":"Tamoghna Ojha , Theofanis P. Raptis , Andrea Passarella , Marco Conti","doi":"10.1016/j.pmcj.2023.101820","DOIUrl":null,"url":null,"abstract":"<div><p><span>Wireless power transfer (WPT) techniques are emerging as a fundamental component of next-generation </span>energy management<span><span> in mobile networks. In this context, the use of UAVs opens many possibilities, either using them as mobile </span>energy storage devices<span> to recharge IoT nodes, or to prolong their operation time via smart charging themselves at ground stations. This paper surveys the recent literature on WPT as it applies to UAVs and identifies several open research challenges for the future. As a first step, we tessellate the related research corpus in four fundamental categories (architectures, power and communications enabling technologies, optimization with respect to spatial concepts, optimization of operational aspects). Second, for each category, we provide a critical review of the recent WPT UAV approaches with respect to the way they specialize the general concept of WPT and the extent of their applicability. The survey presents the latest advances in WPT UAV methodologies and related energy-centric services, spanning all the way from the communications aspects deep in the small- and large-scale deployments, up to the operational and applications aspects. Finally, motivated by the rich conclusions of this critical analysis, we identify open challenges for future research. Our approach is horizontal, as the selected publications were drawn from across all vertical areas of research on UAVs. This paper can help the readers to deeply understand how WPT is currently applied to UAVs, and select interesting open research opportunities to pursue.</span></span></p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wireless power transfer with unmanned aerial vehicles: State of the art and open challenges\",\"authors\":\"Tamoghna Ojha , Theofanis P. Raptis , Andrea Passarella , Marco Conti\",\"doi\":\"10.1016/j.pmcj.2023.101820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Wireless power transfer (WPT) techniques are emerging as a fundamental component of next-generation </span>energy management<span><span> in mobile networks. In this context, the use of UAVs opens many possibilities, either using them as mobile </span>energy storage devices<span> to recharge IoT nodes, or to prolong their operation time via smart charging themselves at ground stations. This paper surveys the recent literature on WPT as it applies to UAVs and identifies several open research challenges for the future. As a first step, we tessellate the related research corpus in four fundamental categories (architectures, power and communications enabling technologies, optimization with respect to spatial concepts, optimization of operational aspects). Second, for each category, we provide a critical review of the recent WPT UAV approaches with respect to the way they specialize the general concept of WPT and the extent of their applicability. The survey presents the latest advances in WPT UAV methodologies and related energy-centric services, spanning all the way from the communications aspects deep in the small- and large-scale deployments, up to the operational and applications aspects. Finally, motivated by the rich conclusions of this critical analysis, we identify open challenges for future research. Our approach is horizontal, as the selected publications were drawn from across all vertical areas of research on UAVs. This paper can help the readers to deeply understand how WPT is currently applied to UAVs, and select interesting open research opportunities to pursue.</span></span></p></div>\",\"PeriodicalId\":49005,\"journal\":{\"name\":\"Pervasive and Mobile Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pervasive and Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574119223000780\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119223000780","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Wireless power transfer with unmanned aerial vehicles: State of the art and open challenges
Wireless power transfer (WPT) techniques are emerging as a fundamental component of next-generation energy management in mobile networks. In this context, the use of UAVs opens many possibilities, either using them as mobile energy storage devices to recharge IoT nodes, or to prolong their operation time via smart charging themselves at ground stations. This paper surveys the recent literature on WPT as it applies to UAVs and identifies several open research challenges for the future. As a first step, we tessellate the related research corpus in four fundamental categories (architectures, power and communications enabling technologies, optimization with respect to spatial concepts, optimization of operational aspects). Second, for each category, we provide a critical review of the recent WPT UAV approaches with respect to the way they specialize the general concept of WPT and the extent of their applicability. The survey presents the latest advances in WPT UAV methodologies and related energy-centric services, spanning all the way from the communications aspects deep in the small- and large-scale deployments, up to the operational and applications aspects. Finally, motivated by the rich conclusions of this critical analysis, we identify open challenges for future research. Our approach is horizontal, as the selected publications were drawn from across all vertical areas of research on UAVs. This paper can help the readers to deeply understand how WPT is currently applied to UAVs, and select interesting open research opportunities to pursue.
期刊介绍:
As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies.
The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.