几乎最优的查询算法命中集使用子集查询

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Arijit Bishnu , Arijit Ghosh , Sudeshna Kolay , Gopinath Mishra , Saket Saurabh
{"title":"几乎最优的查询算法命中集使用子集查询","authors":"Arijit Bishnu ,&nbsp;Arijit Ghosh ,&nbsp;Sudeshna Kolay ,&nbsp;Gopinath Mishra ,&nbsp;Saket Saurabh","doi":"10.1016/j.jcss.2023.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we focus on <span>Hitting-Set</span><span>, a fundamental problem in combinatorial optimization, through the lens of sublinear time algorithms. Given access to the hypergraph through a subset query oracle in the query model, we give sublinear time algorithms for </span><span>Hitting-Set</span><span> with almost tight parameterized query complexity. In </span><em>parameterized query complexity</em>, we estimate the number of queries to the oracle based on the parameter <em>k</em>, the size of the <span>Hitting-Set</span>. The subset query oracle we use in this paper is called Generalized <em>d</em><span>-partite Independent Set query oracle (GPIS) and it was introduced by Bishnu et al. (ISAAC'18). GPIS is a generalization to hypergraphs of the Bipartite Independent Set query oracle (BIS) introduced by Beame et al. (ITCS'18 and TALG'20) for estimating the number of edges in graphs. Since its introduction GPIS query oracle has been used for estimating the number of hyperedges independently by Dell et al. (SODA'20 and SICOMP'22) and Bhattacharya et al. (STACS'22), and for estimating the number of triangles in a graph by Bhattacharya et al. (ISAAC'19 and TOCS'21). Formally, GPIS is defined as follows: </span><span>GPIS</span> <em>oracle for a d-uniform hypergraph</em> <span><math><mi>H</mi></math></span> <em>takes as input d pairwise disjoint non-empty subsets</em> <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> <em>of vertices in</em> <span><math><mi>H</mi></math></span> <em>and answers whether there is a hyperedge in</em> <span><math><mi>H</mi></math></span> <em>that intersects each set</em> <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span><em>, where</em> <span><math><mi>i</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mspace></mspace><mn>2</mn><mo>,</mo><mspace></mspace><mo>…</mo><mo>,</mo><mi>d</mi><mo>}</mo></math></span><em>.</em> For <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>, the <span>GPIS</span> oracle is nothing but <span>BIS</span> oracle.</p><p>We show that <em>d</em>-<span>Hitting-Set</span>, the hitting set problem for <em>d</em>-uniform hypergraphs, can be solved using <span><math><msub><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>d</mi></mrow></msup><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> <span>GPIS</span> queries. Additionally, we also showed that <em>d</em>-<span>Decision-Hitting-Set</span>, the decision version of <em>d</em>-<span>Hitting-Set</span> can be solved with <span><math><msub><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>min</mi><mo>⁡</mo><mrow><mo>{</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>d</mi></mrow></msup><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></mrow></math></span>, <span><math><mrow><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msup><mo>}</mo></mrow><mo>)</mo></math></span> <span>GPIS</span> queries. We complement these parameterized upper bounds with an almost matching parameterized lower bound that states that any algorithm that solves <em>d</em>-<span>Decision-Hitting-Set</span> requires <span><math><mi>Ω</mi><mrow><mo>(</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>d</mi></mrow></mtd></mtr><mtr><mtd><mi>d</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>)</mo></mrow></math></span> <span>GPIS</span> queries.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"137 ","pages":"Pages 50-65"},"PeriodicalIF":1.1000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost optimal query algorithm for hitting set using a subset query\",\"authors\":\"Arijit Bishnu ,&nbsp;Arijit Ghosh ,&nbsp;Sudeshna Kolay ,&nbsp;Gopinath Mishra ,&nbsp;Saket Saurabh\",\"doi\":\"10.1016/j.jcss.2023.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we focus on <span>Hitting-Set</span><span>, a fundamental problem in combinatorial optimization, through the lens of sublinear time algorithms. Given access to the hypergraph through a subset query oracle in the query model, we give sublinear time algorithms for </span><span>Hitting-Set</span><span> with almost tight parameterized query complexity. In </span><em>parameterized query complexity</em>, we estimate the number of queries to the oracle based on the parameter <em>k</em>, the size of the <span>Hitting-Set</span>. The subset query oracle we use in this paper is called Generalized <em>d</em><span>-partite Independent Set query oracle (GPIS) and it was introduced by Bishnu et al. (ISAAC'18). GPIS is a generalization to hypergraphs of the Bipartite Independent Set query oracle (BIS) introduced by Beame et al. (ITCS'18 and TALG'20) for estimating the number of edges in graphs. Since its introduction GPIS query oracle has been used for estimating the number of hyperedges independently by Dell et al. (SODA'20 and SICOMP'22) and Bhattacharya et al. (STACS'22), and for estimating the number of triangles in a graph by Bhattacharya et al. (ISAAC'19 and TOCS'21). Formally, GPIS is defined as follows: </span><span>GPIS</span> <em>oracle for a d-uniform hypergraph</em> <span><math><mi>H</mi></math></span> <em>takes as input d pairwise disjoint non-empty subsets</em> <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> <em>of vertices in</em> <span><math><mi>H</mi></math></span> <em>and answers whether there is a hyperedge in</em> <span><math><mi>H</mi></math></span> <em>that intersects each set</em> <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span><em>, where</em> <span><math><mi>i</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mspace></mspace><mn>2</mn><mo>,</mo><mspace></mspace><mo>…</mo><mo>,</mo><mi>d</mi><mo>}</mo></math></span><em>.</em> For <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>, the <span>GPIS</span> oracle is nothing but <span>BIS</span> oracle.</p><p>We show that <em>d</em>-<span>Hitting-Set</span>, the hitting set problem for <em>d</em>-uniform hypergraphs, can be solved using <span><math><msub><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>d</mi></mrow></msub><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>d</mi></mrow></msup><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> <span>GPIS</span> queries. Additionally, we also showed that <em>d</em>-<span>Decision-Hitting-Set</span>, the decision version of <em>d</em>-<span>Hitting-Set</span> can be solved with <span><math><msub><mrow><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>min</mi><mo>⁡</mo><mrow><mo>{</mo><msup><mrow><mi>k</mi></mrow><mrow><mi>d</mi></mrow></msup><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></mrow></math></span>, <span><math><mrow><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msup><mo>}</mo></mrow><mo>)</mo></math></span> <span>GPIS</span> queries. We complement these parameterized upper bounds with an almost matching parameterized lower bound that states that any algorithm that solves <em>d</em>-<span>Decision-Hitting-Set</span> requires <span><math><mi>Ω</mi><mrow><mo>(</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>k</mi><mo>+</mo><mi>d</mi></mrow></mtd></mtr><mtr><mtd><mi>d</mi></mtd></mtr></mtable><mo>)</mo></mrow><mo>)</mo></mrow></math></span> <span>GPIS</span> queries.</p></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"137 \",\"pages\":\"Pages 50-65\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000023000156\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000023000156","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们通过亚线性时间算法的视角来关注组合优化中的一个基本问题——命中集。给定通过查询模型中的子集查询预言器访问超图,我们给出了具有几乎严格参数化查询复杂性的Hitting Set的次线性时间算法。在参数化查询复杂性中,我们根据参数k(Hitting Set的大小)来估计对oracle的查询数量。本文中使用的子集查询预言机被称为广义d部分独立集查询预言机(GPIS),它是由Bishnu等人(ISAAC'18)引入的。GPIS是Beame等人(ITCS'18和TALG'20)引入的双部分独立集查询预言机(BIS)超图的推广,用于估计图中的边数。自引入GPIS查询预言机以来,Dell等人(SODA'20和SICOMP'22)和Bhattacharya等人(STACS'22)已将其独立用于估计超边的数量,Bhattacharia等人(ISAAC'19和TOCS'21)也将其用于估计图中三角形的数量。形式上,GPIS定义如下:d-一致超图H的GPIS预言机将H中顶点的d个成对不相交的非空子集A1,…,Ad作为输入,并回答H中是否存在与每个集合Ai相交的超边,其中i∈{1,2,…,d}。对于d=2,GPIS预言机不过是BIS预言机。我们证明了d-一致超图的碰撞集问题d-碰撞集可以用O~d(kdlog⁡n) GPIS查询。此外,我们还证明了d-Decision-Hitting-Set,d-Hitting-Sert的决策版本可以用O~d(min⁡{kdlog⁡n、 k2d2})GPIS查询。我们用一个几乎匹配的参数化下界来补充这些参数化上界,该下界表示任何求解d-Decision-Hitting-Set的算法都需要Ω((k+dd))GPIS查询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Almost optimal query algorithm for hitting set using a subset query

In this paper, we focus on Hitting-Set, a fundamental problem in combinatorial optimization, through the lens of sublinear time algorithms. Given access to the hypergraph through a subset query oracle in the query model, we give sublinear time algorithms for Hitting-Set with almost tight parameterized query complexity. In parameterized query complexity, we estimate the number of queries to the oracle based on the parameter k, the size of the Hitting-Set. The subset query oracle we use in this paper is called Generalized d-partite Independent Set query oracle (GPIS) and it was introduced by Bishnu et al. (ISAAC'18). GPIS is a generalization to hypergraphs of the Bipartite Independent Set query oracle (BIS) introduced by Beame et al. (ITCS'18 and TALG'20) for estimating the number of edges in graphs. Since its introduction GPIS query oracle has been used for estimating the number of hyperedges independently by Dell et al. (SODA'20 and SICOMP'22) and Bhattacharya et al. (STACS'22), and for estimating the number of triangles in a graph by Bhattacharya et al. (ISAAC'19 and TOCS'21). Formally, GPIS is defined as follows: GPIS oracle for a d-uniform hypergraph H takes as input d pairwise disjoint non-empty subsets A1,,Ad of vertices in H and answers whether there is a hyperedge in H that intersects each set Ai, where i{1,2,,d}. For d=2, the GPIS oracle is nothing but BIS oracle.

We show that d-Hitting-Set, the hitting set problem for d-uniform hypergraphs, can be solved using O˜d(kdlogn) GPIS queries. Additionally, we also showed that d-Decision-Hitting-Set, the decision version of d-Hitting-Set can be solved with O˜d(min{kdlogn, k2d2}) GPIS queries. We complement these parameterized upper bounds with an almost matching parameterized lower bound that states that any algorithm that solves d-Decision-Hitting-Set requires Ω((k+dd)) GPIS queries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信