缺失信息的确切数量使得找到可能的赢家变得困难

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Palash Dey , Neeldhara Misra
{"title":"缺失信息的确切数量使得找到可能的赢家变得困难","authors":"Palash Dey ,&nbsp;Neeldhara Misra","doi":"10.1016/j.jcss.2023.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>In the <em>possible winner</em> problem, we need to compute if a set of partial votes can be completed such that a given candidate wins the election under some specific voting rule. In this paper, we determine the smallest number of undetermined pairs per partial vote for which the <span>Possible Winner</span> problem is <span><math><mi>NP</mi></math></span>-complete. In particular, we find the exact values of <em>t</em> for which the <span>Possible Winner</span> problem transitions to being <span><math><mi>NP</mi></math></span>-complete from being in <span><math><mi>P</mi></math></span>, where <em>t</em> is the maximum number of undetermined pairs in every vote. We demonstrate tight results for a broad class of scoring rules, Copeland<sup><em>α</em></sup> for every <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, maximin, and Bucklin voting rules. A somewhat surprising aspect of our results is that for many of these rules, the <span>Possible Winner</span> problem turns out to be hard even if every vote has at most one undetermined pair of candidates.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"135 ","pages":"Pages 32-54"},"PeriodicalIF":1.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the exact amount of missing information that makes finding possible winners hard\",\"authors\":\"Palash Dey ,&nbsp;Neeldhara Misra\",\"doi\":\"10.1016/j.jcss.2023.02.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the <em>possible winner</em> problem, we need to compute if a set of partial votes can be completed such that a given candidate wins the election under some specific voting rule. In this paper, we determine the smallest number of undetermined pairs per partial vote for which the <span>Possible Winner</span> problem is <span><math><mi>NP</mi></math></span>-complete. In particular, we find the exact values of <em>t</em> for which the <span>Possible Winner</span> problem transitions to being <span><math><mi>NP</mi></math></span>-complete from being in <span><math><mi>P</mi></math></span>, where <em>t</em> is the maximum number of undetermined pairs in every vote. We demonstrate tight results for a broad class of scoring rules, Copeland<sup><em>α</em></sup> for every <span><math><mi>α</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, maximin, and Bucklin voting rules. A somewhat surprising aspect of our results is that for many of these rules, the <span>Possible Winner</span> problem turns out to be hard even if every vote has at most one undetermined pair of candidates.</p></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"135 \",\"pages\":\"Pages 32-54\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000023000168\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000023000168","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

在可能的获胜者问题中,我们需要计算一组部分选票是否可以完成,从而使给定的候选人在特定的投票规则下赢得选举。在本文中,我们确定了每个部分投票的最小数量的未确定对,其中可能的赢家问题是NP完全的。特别地,我们找到了t的精确值,对于该值,可能的赢家问题从处于P中转变为NP完全,其中t是每次投票中未确定对的最大数量。我们证明了一类广泛的评分规则的严密结果,Copelandα对于每个α∈[0,1],maximin和Bucklin投票规则。我们的结果有点令人惊讶的一点是,对于其中许多规则,即使每张选票最多有一对未确定的候选人,“可能的赢家”问题也很难解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the exact amount of missing information that makes finding possible winners hard

In the possible winner problem, we need to compute if a set of partial votes can be completed such that a given candidate wins the election under some specific voting rule. In this paper, we determine the smallest number of undetermined pairs per partial vote for which the Possible Winner problem is NP-complete. In particular, we find the exact values of t for which the Possible Winner problem transitions to being NP-complete from being in P, where t is the maximum number of undetermined pairs in every vote. We demonstrate tight results for a broad class of scoring rules, Copelandα for every α[0,1], maximin, and Bucklin voting rules. A somewhat surprising aspect of our results is that for many of these rules, the Possible Winner problem turns out to be hard even if every vote has at most one undetermined pair of candidates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信