Afonso S. Bandeira , Ben Blum-Smith , Joe Kileel , Jonathan Niles-Weed , Amelia Perry , Alexander S. Wein
{"title":"群作用下的估计:从不变量中恢复轨道","authors":"Afonso S. Bandeira , Ben Blum-Smith , Joe Kileel , Jonathan Niles-Weed , Amelia Perry , Alexander S. Wein","doi":"10.1016/j.acha.2023.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>We study a class of <em>orbit recovery</em> problems in which we observe independent copies of an unknown element of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>, each linearly acted upon by a random element of some group (such as <span><math><mi>Z</mi><mo>/</mo><mi>p</mi></math></span> or <span><math><mrow><mi>SO</mi></mrow><mo>(</mo><mn>3</mn><mo>)</mo></math></span><span>) and then corrupted by additive Gaussian noise. We prove matching upper and lower bounds on the number of samples required to approximately recover the group orbit of this unknown element with high probability. These bounds, based on quantitative techniques in invariant theory, give a precise correspondence between the statistical difficulty of the estimation problem and algebraic properties of the group. Furthermore, we give computer-assisted procedures to certify these properties that are computationally efficient in many cases of interest.</span></p><p>The model is motivated by geometric problems in signal processing, computer vision, and structural biology, and applies to the reconstruction problem in cryo-electron microscopy (cryo-EM), a problem of significant practical interest. Our results allow us to verify (for a given problem size) that if cryo-EM images are corrupted by noise with variance <span><math><msup><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, the number of images required to recover the molecule structure scales as <span><math><msup><mrow><mi>σ</mi></mrow><mrow><mn>6</mn></mrow></msup></math></span>. We match this bound with a novel (albeit computationally expensive) algorithm for <em>ab initio</em> reconstruction in cryo-EM, based on invariant features of degree at most 3. We further discuss how to recover multiple molecular structures from mixed (or heterogeneous) cryo-EM samples.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"66 ","pages":"Pages 236-319"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Estimation under group actions: Recovering orbits from invariants\",\"authors\":\"Afonso S. Bandeira , Ben Blum-Smith , Joe Kileel , Jonathan Niles-Weed , Amelia Perry , Alexander S. Wein\",\"doi\":\"10.1016/j.acha.2023.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study a class of <em>orbit recovery</em> problems in which we observe independent copies of an unknown element of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>, each linearly acted upon by a random element of some group (such as <span><math><mi>Z</mi><mo>/</mo><mi>p</mi></math></span> or <span><math><mrow><mi>SO</mi></mrow><mo>(</mo><mn>3</mn><mo>)</mo></math></span><span>) and then corrupted by additive Gaussian noise. We prove matching upper and lower bounds on the number of samples required to approximately recover the group orbit of this unknown element with high probability. These bounds, based on quantitative techniques in invariant theory, give a precise correspondence between the statistical difficulty of the estimation problem and algebraic properties of the group. Furthermore, we give computer-assisted procedures to certify these properties that are computationally efficient in many cases of interest.</span></p><p>The model is motivated by geometric problems in signal processing, computer vision, and structural biology, and applies to the reconstruction problem in cryo-electron microscopy (cryo-EM), a problem of significant practical interest. Our results allow us to verify (for a given problem size) that if cryo-EM images are corrupted by noise with variance <span><math><msup><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, the number of images required to recover the molecule structure scales as <span><math><msup><mrow><mi>σ</mi></mrow><mrow><mn>6</mn></mrow></msup></math></span>. We match this bound with a novel (albeit computationally expensive) algorithm for <em>ab initio</em> reconstruction in cryo-EM, based on invariant features of degree at most 3. We further discuss how to recover multiple molecular structures from mixed (or heterogeneous) cryo-EM samples.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"66 \",\"pages\":\"Pages 236-319\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520323000465\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520323000465","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Estimation under group actions: Recovering orbits from invariants
We study a class of orbit recovery problems in which we observe independent copies of an unknown element of , each linearly acted upon by a random element of some group (such as or ) and then corrupted by additive Gaussian noise. We prove matching upper and lower bounds on the number of samples required to approximately recover the group orbit of this unknown element with high probability. These bounds, based on quantitative techniques in invariant theory, give a precise correspondence between the statistical difficulty of the estimation problem and algebraic properties of the group. Furthermore, we give computer-assisted procedures to certify these properties that are computationally efficient in many cases of interest.
The model is motivated by geometric problems in signal processing, computer vision, and structural biology, and applies to the reconstruction problem in cryo-electron microscopy (cryo-EM), a problem of significant practical interest. Our results allow us to verify (for a given problem size) that if cryo-EM images are corrupted by noise with variance , the number of images required to recover the molecule structure scales as . We match this bound with a novel (albeit computationally expensive) algorithm for ab initio reconstruction in cryo-EM, based on invariant features of degree at most 3. We further discuss how to recover multiple molecular structures from mixed (or heterogeneous) cryo-EM samples.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.