银河令牌滑动

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Valentin Bartier , Nicolas Bousquet , Amer E. Mouawad
{"title":"银河令牌滑动","authors":"Valentin Bartier ,&nbsp;Nicolas Bousquet ,&nbsp;Amer E. Mouawad","doi":"10.1016/j.jcss.2023.03.008","DOIUrl":null,"url":null,"abstract":"<div><p>Given a graph <em>G</em><span> and two independent sets </span><span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> of size <em>k</em>, the <span>Independent Set Reconfiguration</span> problem asks whether there exists a sequence of independent sets that transforms <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> to <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> such that each independent set is obtained from the previous one using a so-called reconfiguration step. Viewing each independent set as a collection of <em>k</em> tokens placed on the vertices of a graph <em>G</em>, the two most studied reconfiguration steps are token jumping and token sliding. Over a series of papers, it was shown that the <span>Token Jumping</span> problem is fixed-parameter tractable (for parameter <em>k</em>) when restricted to sparse graph classes, such as planar, bounded treewidth, and nowhere dense graphs. As for the <span>Token Sliding</span> problem, almost nothing is known. We remedy this situation by showing that <span>Token Sliding</span><span> is fixed-parameter tractable on graphs of bounded degree, planar graphs<span>, and chordal graphs of bounded clique number.</span></span></p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"136 ","pages":"Pages 220-248"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Galactic token sliding\",\"authors\":\"Valentin Bartier ,&nbsp;Nicolas Bousquet ,&nbsp;Amer E. Mouawad\",\"doi\":\"10.1016/j.jcss.2023.03.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a graph <em>G</em><span> and two independent sets </span><span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> of size <em>k</em>, the <span>Independent Set Reconfiguration</span> problem asks whether there exists a sequence of independent sets that transforms <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> to <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span> such that each independent set is obtained from the previous one using a so-called reconfiguration step. Viewing each independent set as a collection of <em>k</em> tokens placed on the vertices of a graph <em>G</em>, the two most studied reconfiguration steps are token jumping and token sliding. Over a series of papers, it was shown that the <span>Token Jumping</span> problem is fixed-parameter tractable (for parameter <em>k</em>) when restricted to sparse graph classes, such as planar, bounded treewidth, and nowhere dense graphs. As for the <span>Token Sliding</span> problem, almost nothing is known. We remedy this situation by showing that <span>Token Sliding</span><span> is fixed-parameter tractable on graphs of bounded degree, planar graphs<span>, and chordal graphs of bounded clique number.</span></span></p></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"136 \",\"pages\":\"Pages 220-248\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000023000375\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000023000375","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

给定图G和大小为k的两个独立集Is和It,独立集重构问题询问是否存在将Is转换为It的独立集序列,从而使用所谓的重构步骤从前一个独立集获得每个独立集。将每个独立集视为放置在图G的顶点上的k个标记的集合,研究最多的两个重新配置步骤是标记跳跃和标记滑动。在一系列论文中,我们证明了当限制在稀疏图类(如平面图、有界树宽图和无处稠密图)时,令牌跳跃问题是固定参数可处理的(对于参数k)。至于代币滑动问题,几乎一无所知。我们通过证明令牌滑动在有界度图、平面图和有界团数弦图上是可处理的固定参数来纠正这种情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Galactic token sliding

Given a graph G and two independent sets Is and It of size k, the Independent Set Reconfiguration problem asks whether there exists a sequence of independent sets that transforms Is to It such that each independent set is obtained from the previous one using a so-called reconfiguration step. Viewing each independent set as a collection of k tokens placed on the vertices of a graph G, the two most studied reconfiguration steps are token jumping and token sliding. Over a series of papers, it was shown that the Token Jumping problem is fixed-parameter tractable (for parameter k) when restricted to sparse graph classes, such as planar, bounded treewidth, and nowhere dense graphs. As for the Token Sliding problem, almost nothing is known. We remedy this situation by showing that Token Sliding is fixed-parameter tractable on graphs of bounded degree, planar graphs, and chordal graphs of bounded clique number.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信