不完全数据聚类问题的参数化复杂度研究

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Eduard Eiben , Robert Ganian , Iyad Kanj , Sebastian Ordyniak , Stefan Szeider
{"title":"不完全数据聚类问题的参数化复杂度研究","authors":"Eduard Eiben ,&nbsp;Robert Ganian ,&nbsp;Iyad Kanj ,&nbsp;Sebastian Ordyniak ,&nbsp;Stefan Szeider","doi":"10.1016/j.jcss.2022.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>We study fundamental clustering problems for incomplete data. Specifically, given a set of incomplete <em>d</em>-dimensional vectors (representing rows of a matrix), the goal is to complete the missing vector entries in a way that admits a partitioning of the vectors into at most <em>k</em> clusters with radius or diameter at most <em>r</em>. We give characterizations of the parameterized complexity of these problems with respect to the parameters <em>k</em>, <em>r</em><span>, and the minimum number of rows and columns needed to cover all the missing entries. We show that the considered problems are fixed-parameter tractable when parameterized by the three parameters combined, and that dropping any of the three parameters results in parameterized intractability. A byproduct of our results is that, for the complete data setting, all problems under consideration are fixed-parameter tractable parameterized by </span><span><math><mi>k</mi><mo>+</mo><mi>r</mi></math></span>.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"134 ","pages":"Pages 1-19"},"PeriodicalIF":1.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the parameterized complexity of clustering problems for incomplete data\",\"authors\":\"Eduard Eiben ,&nbsp;Robert Ganian ,&nbsp;Iyad Kanj ,&nbsp;Sebastian Ordyniak ,&nbsp;Stefan Szeider\",\"doi\":\"10.1016/j.jcss.2022.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study fundamental clustering problems for incomplete data. Specifically, given a set of incomplete <em>d</em>-dimensional vectors (representing rows of a matrix), the goal is to complete the missing vector entries in a way that admits a partitioning of the vectors into at most <em>k</em> clusters with radius or diameter at most <em>r</em>. We give characterizations of the parameterized complexity of these problems with respect to the parameters <em>k</em>, <em>r</em><span>, and the minimum number of rows and columns needed to cover all the missing entries. We show that the considered problems are fixed-parameter tractable when parameterized by the three parameters combined, and that dropping any of the three parameters results in parameterized intractability. A byproduct of our results is that, for the complete data setting, all problems under consideration are fixed-parameter tractable parameterized by </span><span><math><mi>k</mi><mo>+</mo><mi>r</mi></math></span>.</p></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"134 \",\"pages\":\"Pages 1-19\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000022000836\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000022000836","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了不完全数据的基本聚类问题。具体来说,给定一组不完整的d维向量(表示矩阵的行),目标是以允许将向量划分为最多k个半径或直径为最多r的簇的方式来完成缺失的向量条目,以及覆盖所有缺失条目所需的最小行数和列数。我们证明了当由三个参数组合参数化时,所考虑的问题是固定参数可处理的,并且丢弃三个参数中的任何一个都会导致参数化的难处理性。我们的结果的副产品是,对于完整的数据设置,所考虑的所有问题都是可通过k+r参数化处理的固定参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the parameterized complexity of clustering problems for incomplete data

We study fundamental clustering problems for incomplete data. Specifically, given a set of incomplete d-dimensional vectors (representing rows of a matrix), the goal is to complete the missing vector entries in a way that admits a partitioning of the vectors into at most k clusters with radius or diameter at most r. We give characterizations of the parameterized complexity of these problems with respect to the parameters k, r, and the minimum number of rows and columns needed to cover all the missing entries. We show that the considered problems are fixed-parameter tractable when parameterized by the three parameters combined, and that dropping any of the three parameters results in parameterized intractability. A byproduct of our results is that, for the complete data setting, all problems under consideration are fixed-parameter tractable parameterized by k+r.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信