毫米波5G智能手机小型化宽带MIMO天线结构SAR评估

IF 2.6 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Rania Hamdy Elabd , Ahmed Jamal Abdullah Al-Gburi
{"title":"毫米波5G智能手机小型化宽带MIMO天线结构SAR评估","authors":"Rania Hamdy Elabd ,&nbsp;Ahmed Jamal Abdullah Al-Gburi","doi":"10.1016/j.mee.2023.112098","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>This work introduces a wideband two-element Multiple-Input Multiple-Output (MIMO) antenna array that covers the desired frequencies of 28/38 GHz for millimeter-wave (mmW) </span>5G<span> smartphones. The antenna array demonstrates significant isolation and gain increase based on dual-mode planar dipole antennas. The proposed structure was designed using CST Microwave Studio 2019. The design is implemented on a Rogers RT 4003 substrate measuring 14.76 × 8.38 mm</span></span><sup>2</sup><span><span><span> with a dielectric constant of 3.55. It features two planar dipole antennas positioned at the corners in a perpendicular arrangement to each other. To achieve the desired wideband performance, each element consists of a dipole antenna and a partial ground plane. The spacing between elements, including the parasitic element<span> (PE), is set to 0.5λ₀ to increase isolation between the MIMO antenna elements while keeping complexity and cost to a minimum. Simulation results demonstrate an improvement in mutual coupling between array members, with measured values ranging from −55 dB to −75 dB. The envelope </span></span>correlation coefficient (ECC) is also improved. Furthermore, enhancements are observed in the total active </span>reflection coefficient<span> (TARC), mean effective gain (MEG), and diversity gain (DG). The measured gains of the proposed designs range from 6 dBi across the entire band to 10 dBi at 40 GHz, with a radiation efficiency close to 95%. The antenna performs well in the presence of the handset and human head model during simulation. The study identifies a safe and acceptable specific absorption rate (SAR) value, which provides a low SAR10g of about 0.963 W/Kg at 28 GHz and 0.583 W/Kg at 38 GHz. while maintaining superior efficiency and radiation patterns. When the antennas are constructed and tested, the experimental results surpass the modeling results. The simulation and test findings demonstrate a satisfactory fit within the target band, suggesting that the proposed structure could be applied to millimeter-wave 5G smartphones.</span></span></p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"282 ","pages":"Article 112098"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"SAR assessment of miniaturized wideband MIMO antenna structure for millimeter wave 5G smartphones\",\"authors\":\"Rania Hamdy Elabd ,&nbsp;Ahmed Jamal Abdullah Al-Gburi\",\"doi\":\"10.1016/j.mee.2023.112098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>This work introduces a wideband two-element Multiple-Input Multiple-Output (MIMO) antenna array that covers the desired frequencies of 28/38 GHz for millimeter-wave (mmW) </span>5G<span> smartphones. The antenna array demonstrates significant isolation and gain increase based on dual-mode planar dipole antennas. The proposed structure was designed using CST Microwave Studio 2019. The design is implemented on a Rogers RT 4003 substrate measuring 14.76 × 8.38 mm</span></span><sup>2</sup><span><span><span> with a dielectric constant of 3.55. It features two planar dipole antennas positioned at the corners in a perpendicular arrangement to each other. To achieve the desired wideband performance, each element consists of a dipole antenna and a partial ground plane. The spacing between elements, including the parasitic element<span> (PE), is set to 0.5λ₀ to increase isolation between the MIMO antenna elements while keeping complexity and cost to a minimum. Simulation results demonstrate an improvement in mutual coupling between array members, with measured values ranging from −55 dB to −75 dB. The envelope </span></span>correlation coefficient (ECC) is also improved. Furthermore, enhancements are observed in the total active </span>reflection coefficient<span> (TARC), mean effective gain (MEG), and diversity gain (DG). The measured gains of the proposed designs range from 6 dBi across the entire band to 10 dBi at 40 GHz, with a radiation efficiency close to 95%. The antenna performs well in the presence of the handset and human head model during simulation. The study identifies a safe and acceptable specific absorption rate (SAR) value, which provides a low SAR10g of about 0.963 W/Kg at 28 GHz and 0.583 W/Kg at 38 GHz. while maintaining superior efficiency and radiation patterns. When the antennas are constructed and tested, the experimental results surpass the modeling results. The simulation and test findings demonstrate a satisfactory fit within the target band, suggesting that the proposed structure could be applied to millimeter-wave 5G smartphones.</span></span></p></div>\",\"PeriodicalId\":18557,\"journal\":{\"name\":\"Microelectronic Engineering\",\"volume\":\"282 \",\"pages\":\"Article 112098\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167931723001636\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931723001636","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

摘要

这项工作介绍了一种宽带双元件多输入多输出(MIMO)天线阵列,该阵列覆盖毫米波(mmW)5G智能手机所需的28/38 GHz频率。该天线阵列在双模平面偶极天线的基础上表现出显著的隔离性和增益增加。拟建结构采用CST Microwave Studio 2019进行设计。该设计是在介电常数为3.55、尺寸为14.76×8.38 mm2的Rogers RT 4003基板上实现的。它的特点是两个平面偶极天线以相互垂直的方式位于角落。为了实现所需的宽带性能,每个元件由偶极天线和部分接地平面组成。元件之间的间距,包括寄生元件(PE),设置为0.5λ₀ 以增加MIMO天线元件之间的隔离,同时将复杂性和成本保持在最小。仿真结果表明,阵列成员之间的相互耦合有所改善,测量值范围从−55 dB到−75 dB。包络相关系数(ECC)也得到了改善。此外,观察到全有源反射系数(TARC)、平均有效增益(MEG)和分集增益(DG)的增强。所提出的设计的测量增益范围从整个频带的6dBi到40GHz的10dBi,辐射效率接近95%。在模拟过程中,天线在手机和人头模型存在的情况下表现良好。该研究确定了一个安全且可接受的比吸收率(SAR)值,该值在28 GHz时提供约0.963 W/Kg的低SAR 10g,在38 GHz时提供0.583 W/Kg。同时保持优异的效率和辐射模式。当天线被构造和测试时,实验结果超过了建模结果。仿真和测试结果表明,该结构在目标波段内具有令人满意的拟合性,表明该结构可应用于毫米波5G智能手机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

SAR assessment of miniaturized wideband MIMO antenna structure for millimeter wave 5G smartphones

SAR assessment of miniaturized wideband MIMO antenna structure for millimeter wave 5G smartphones

This work introduces a wideband two-element Multiple-Input Multiple-Output (MIMO) antenna array that covers the desired frequencies of 28/38 GHz for millimeter-wave (mmW) 5G smartphones. The antenna array demonstrates significant isolation and gain increase based on dual-mode planar dipole antennas. The proposed structure was designed using CST Microwave Studio 2019. The design is implemented on a Rogers RT 4003 substrate measuring 14.76 × 8.38 mm2 with a dielectric constant of 3.55. It features two planar dipole antennas positioned at the corners in a perpendicular arrangement to each other. To achieve the desired wideband performance, each element consists of a dipole antenna and a partial ground plane. The spacing between elements, including the parasitic element (PE), is set to 0.5λ₀ to increase isolation between the MIMO antenna elements while keeping complexity and cost to a minimum. Simulation results demonstrate an improvement in mutual coupling between array members, with measured values ranging from −55 dB to −75 dB. The envelope correlation coefficient (ECC) is also improved. Furthermore, enhancements are observed in the total active reflection coefficient (TARC), mean effective gain (MEG), and diversity gain (DG). The measured gains of the proposed designs range from 6 dBi across the entire band to 10 dBi at 40 GHz, with a radiation efficiency close to 95%. The antenna performs well in the presence of the handset and human head model during simulation. The study identifies a safe and acceptable specific absorption rate (SAR) value, which provides a low SAR10g of about 0.963 W/Kg at 28 GHz and 0.583 W/Kg at 38 GHz. while maintaining superior efficiency and radiation patterns. When the antennas are constructed and tested, the experimental results surpass the modeling results. The simulation and test findings demonstrate a satisfactory fit within the target band, suggesting that the proposed structure could be applied to millimeter-wave 5G smartphones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microelectronic Engineering
Microelectronic Engineering 工程技术-工程:电子与电气
CiteScore
5.30
自引率
4.30%
发文量
131
审稿时长
29 days
期刊介绍: Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信