更快地找到隐蔽的树

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Huib Donkers, Bart M.P. Jansen , Jari J.H. de Kroon
{"title":"更快地找到隐蔽的树","authors":"Huib Donkers,&nbsp;Bart M.P. Jansen ,&nbsp;Jari J.H. de Kroon","doi":"10.1016/j.jcss.2023.05.006","DOIUrl":null,"url":null,"abstract":"<div><p>We revisit the <em>k</em><span>-Secluded Tree</span> problem. Given a vertex-weighted undirected graph <em>G</em>, its objective is to find a maximum-weight induced subtree <em>T</em> whose open neighborhood has size at most <em>k</em>. We present a fixed-parameter tractable algorithm that solves the problem in time <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>k</mi><mi>log</mi><mo>⁡</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>⋅</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>, improving on a double-exponential running time from earlier work by Golovach, Heggernes, Lima, and Montealegre. Starting from a single vertex, our algorithm grows a <em>k</em>-secluded tree by branching on vertices in the open neighborhood of the current tree <em>T</em>. To bound the branching depth, we prove a structural result that can be used to identify a vertex that belongs to the neighborhood of any <em>k</em>-secluded supertree <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>⊇</mo><mi>T</mi></math></span> once the open neighborhood of <em>T</em> becomes sufficiently large. We extend the algorithm to enumerate compact descriptions of all maximum-weight <em>k</em>-secluded trees, which allows us to count them as well.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"138 ","pages":"Article 103461"},"PeriodicalIF":1.1000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding k-secluded trees faster\",\"authors\":\"Huib Donkers,&nbsp;Bart M.P. Jansen ,&nbsp;Jari J.H. de Kroon\",\"doi\":\"10.1016/j.jcss.2023.05.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We revisit the <em>k</em><span>-Secluded Tree</span> problem. Given a vertex-weighted undirected graph <em>G</em>, its objective is to find a maximum-weight induced subtree <em>T</em> whose open neighborhood has size at most <em>k</em>. We present a fixed-parameter tractable algorithm that solves the problem in time <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>k</mi><mi>log</mi><mo>⁡</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>⋅</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>, improving on a double-exponential running time from earlier work by Golovach, Heggernes, Lima, and Montealegre. Starting from a single vertex, our algorithm grows a <em>k</em>-secluded tree by branching on vertices in the open neighborhood of the current tree <em>T</em>. To bound the branching depth, we prove a structural result that can be used to identify a vertex that belongs to the neighborhood of any <em>k</em>-secluded supertree <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>⊇</mo><mi>T</mi></math></span> once the open neighborhood of <em>T</em> becomes sufficiently large. We extend the algorithm to enumerate compact descriptions of all maximum-weight <em>k</em>-secluded trees, which allows us to count them as well.</p></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"138 \",\"pages\":\"Article 103461\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000023000594\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000023000594","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

我们重新讨论k-封闭树问题。给定一个顶点加权无向图G,它的目标是找到一个开邻域大小最大为k的最大权诱导子树T⁡k) ·nO(1),在Golovach、Heggernes、Lima和Montealegre早期工作的双指数运行时间基础上改进。从单个顶点开始,我们的算法通过在当前树T的开邻域中的顶点上进行分支来生长k隐树。为了限制分支深度,我们证明了一个结构结果,一旦T的开域变得足够大,就可以用来识别属于任何k隐超树T′⊇T的邻域的顶点。我们将算法扩展到枚举所有最大权重k隐树的紧凑描述,这也允许我们对它们进行计数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding k-secluded trees faster

We revisit the k-Secluded Tree problem. Given a vertex-weighted undirected graph G, its objective is to find a maximum-weight induced subtree T whose open neighborhood has size at most k. We present a fixed-parameter tractable algorithm that solves the problem in time 2O(klogk)nO(1), improving on a double-exponential running time from earlier work by Golovach, Heggernes, Lima, and Montealegre. Starting from a single vertex, our algorithm grows a k-secluded tree by branching on vertices in the open neighborhood of the current tree T. To bound the branching depth, we prove a structural result that can be used to identify a vertex that belongs to the neighborhood of any k-secluded supertree TT once the open neighborhood of T becomes sufficiently large. We extend the algorithm to enumerate compact descriptions of all maximum-weight k-secluded trees, which allows us to count them as well.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信