Suneuy Kim, Yvonne Hoang, Tsz Ting Yu, Yuvraj Singh Kanwar
{"title":"GeoYCSB:地理空间NoSQL数据库性能和可扩展性评估的基准框架","authors":"Suneuy Kim, Yvonne Hoang, Tsz Ting Yu, Yuvraj Singh Kanwar","doi":"10.1016/j.bdr.2023.100368","DOIUrl":null,"url":null,"abstract":"<div><p>The proliferation of geospatial applications has tremendously increased the variety, velocity, and volume of spatial data that data stores have to manage. Traditional relational databases reveal limitations in handling such big geospatial data, mainly due to their rigid schema requirements and limited scalability. Numerous NoSQL databases have emerged and actively serve as alternative data stores for big spatial data.</p><p>This study presents a framework, called GeoYCSB, developed for benchmarking NoSQL databases with geospatial workloads. To develop GeoYCSB, we extend YCSB, a de facto benchmark framework for NoSQL systems, by integrating into its design architecture the new components necessary to support geospatial workloads. GeoYCSB supports both microbenchmarks and macrobenchmarks and facilitates the use of real datasets in both. It is extensible to evaluate any NoSQL database, provided they support spatial queries, using geospatial workloads performed on datasets of any geometric complexity. We use GeoYCSB to benchmark two leading document stores, MongoDB and Couchbase, and present the experimental results and analysis. Finally, we demonstrate the extensibility of GeoYCSB by including a new dataset consisting of complex geometries and using it to benchmark a system with a wide variety of geospatial queries: Apache Accumulo, a wide-column store, with the GeoMesa framework applied on top.</p></div>","PeriodicalId":56017,"journal":{"name":"Big Data Research","volume":"31 ","pages":"Article 100368"},"PeriodicalIF":3.5000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"GeoYCSB: A Benchmark Framework for the Performance and Scalability Evaluation of Geospatial NoSQL Databases\",\"authors\":\"Suneuy Kim, Yvonne Hoang, Tsz Ting Yu, Yuvraj Singh Kanwar\",\"doi\":\"10.1016/j.bdr.2023.100368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The proliferation of geospatial applications has tremendously increased the variety, velocity, and volume of spatial data that data stores have to manage. Traditional relational databases reveal limitations in handling such big geospatial data, mainly due to their rigid schema requirements and limited scalability. Numerous NoSQL databases have emerged and actively serve as alternative data stores for big spatial data.</p><p>This study presents a framework, called GeoYCSB, developed for benchmarking NoSQL databases with geospatial workloads. To develop GeoYCSB, we extend YCSB, a de facto benchmark framework for NoSQL systems, by integrating into its design architecture the new components necessary to support geospatial workloads. GeoYCSB supports both microbenchmarks and macrobenchmarks and facilitates the use of real datasets in both. It is extensible to evaluate any NoSQL database, provided they support spatial queries, using geospatial workloads performed on datasets of any geometric complexity. We use GeoYCSB to benchmark two leading document stores, MongoDB and Couchbase, and present the experimental results and analysis. Finally, we demonstrate the extensibility of GeoYCSB by including a new dataset consisting of complex geometries and using it to benchmark a system with a wide variety of geospatial queries: Apache Accumulo, a wide-column store, with the GeoMesa framework applied on top.</p></div>\",\"PeriodicalId\":56017,\"journal\":{\"name\":\"Big Data Research\",\"volume\":\"31 \",\"pages\":\"Article 100368\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214579623000011\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Research","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579623000011","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
GeoYCSB: A Benchmark Framework for the Performance and Scalability Evaluation of Geospatial NoSQL Databases
The proliferation of geospatial applications has tremendously increased the variety, velocity, and volume of spatial data that data stores have to manage. Traditional relational databases reveal limitations in handling such big geospatial data, mainly due to their rigid schema requirements and limited scalability. Numerous NoSQL databases have emerged and actively serve as alternative data stores for big spatial data.
This study presents a framework, called GeoYCSB, developed for benchmarking NoSQL databases with geospatial workloads. To develop GeoYCSB, we extend YCSB, a de facto benchmark framework for NoSQL systems, by integrating into its design architecture the new components necessary to support geospatial workloads. GeoYCSB supports both microbenchmarks and macrobenchmarks and facilitates the use of real datasets in both. It is extensible to evaluate any NoSQL database, provided they support spatial queries, using geospatial workloads performed on datasets of any geometric complexity. We use GeoYCSB to benchmark two leading document stores, MongoDB and Couchbase, and present the experimental results and analysis. Finally, we demonstrate the extensibility of GeoYCSB by including a new dataset consisting of complex geometries and using it to benchmark a system with a wide variety of geospatial queries: Apache Accumulo, a wide-column store, with the GeoMesa framework applied on top.
期刊介绍:
The journal aims to promote and communicate advances in big data research by providing a fast and high quality forum for researchers, practitioners and policy makers from the very many different communities working on, and with, this topic.
The journal will accept papers on foundational aspects in dealing with big data, as well as papers on specific Platforms and Technologies used to deal with big data. To promote Data Science and interdisciplinary collaboration between fields, and to showcase the benefits of data driven research, papers demonstrating applications of big data in domains as diverse as Geoscience, Social Web, Finance, e-Commerce, Health Care, Environment and Climate, Physics and Astronomy, Chemistry, life sciences and drug discovery, digital libraries and scientific publications, security and government will also be considered. Occasionally the journal may publish whitepapers on policies, standards and best practices.