Xiangyu Luo , Tian Wang , Gang Xin , Yan Lu , Ke Yan , Ying Liu
{"title":"基于分类器的非均匀时间切片局部群落演化分析方法","authors":"Xiangyu Luo , Tian Wang , Gang Xin , Yan Lu , Ke Yan , Ying Liu","doi":"10.1016/j.bdr.2023.100408","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid expansion of the scale of a dynamic network, local community evolution analysis attracts much attention because of its efficiency and accuracy. It concentrates on a particularly interested community rather than considering all communities together. A fundamental problem is how to divide time into slices so that a dynamic network is represented as a sequence of snapshots which accurately capture the evolutionary events of the interested community. Existing time slicing methods lead to inaccurate evolution analysis results. The reason is that they usually rely on a linear strategy while the community evolution is a nonlinear process. This paper investigates the problem and proposes a classifier-based time slicing method for local community evolution analysis. First, a classifier is trained for judging whether there is a community in the given network snapshot is identified as the continuing of the community defined by the given node subset. The features for classification include internal cohesion degree and external coupling degree. Second, a time slicing method is proposed based on the trained classifier. As the network evolves, the method continuously uses the classifier to predict whether there is a community in the newest network identified as the continuing of the interested community. Whenever the answer is negative, an evolutionary event is presumed to have occurred and a new time slice is generated. Experimental results show that compared with existing time slicing methods, our proposed method achieves higher recognition rate for given redundancy ratio.</p></div>","PeriodicalId":56017,"journal":{"name":"Big Data Research","volume":"34 ","pages":"Article 100408"},"PeriodicalIF":3.5000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classifier-Based Nonuniform Time Slicing Method for Local Community Evolution Analysis\",\"authors\":\"Xiangyu Luo , Tian Wang , Gang Xin , Yan Lu , Ke Yan , Ying Liu\",\"doi\":\"10.1016/j.bdr.2023.100408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the rapid expansion of the scale of a dynamic network, local community evolution analysis attracts much attention because of its efficiency and accuracy. It concentrates on a particularly interested community rather than considering all communities together. A fundamental problem is how to divide time into slices so that a dynamic network is represented as a sequence of snapshots which accurately capture the evolutionary events of the interested community. Existing time slicing methods lead to inaccurate evolution analysis results. The reason is that they usually rely on a linear strategy while the community evolution is a nonlinear process. This paper investigates the problem and proposes a classifier-based time slicing method for local community evolution analysis. First, a classifier is trained for judging whether there is a community in the given network snapshot is identified as the continuing of the community defined by the given node subset. The features for classification include internal cohesion degree and external coupling degree. Second, a time slicing method is proposed based on the trained classifier. As the network evolves, the method continuously uses the classifier to predict whether there is a community in the newest network identified as the continuing of the interested community. Whenever the answer is negative, an evolutionary event is presumed to have occurred and a new time slice is generated. Experimental results show that compared with existing time slicing methods, our proposed method achieves higher recognition rate for given redundancy ratio.</p></div>\",\"PeriodicalId\":56017,\"journal\":{\"name\":\"Big Data Research\",\"volume\":\"34 \",\"pages\":\"Article 100408\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214579623000412\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Research","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579623000412","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Classifier-Based Nonuniform Time Slicing Method for Local Community Evolution Analysis
With the rapid expansion of the scale of a dynamic network, local community evolution analysis attracts much attention because of its efficiency and accuracy. It concentrates on a particularly interested community rather than considering all communities together. A fundamental problem is how to divide time into slices so that a dynamic network is represented as a sequence of snapshots which accurately capture the evolutionary events of the interested community. Existing time slicing methods lead to inaccurate evolution analysis results. The reason is that they usually rely on a linear strategy while the community evolution is a nonlinear process. This paper investigates the problem and proposes a classifier-based time slicing method for local community evolution analysis. First, a classifier is trained for judging whether there is a community in the given network snapshot is identified as the continuing of the community defined by the given node subset. The features for classification include internal cohesion degree and external coupling degree. Second, a time slicing method is proposed based on the trained classifier. As the network evolves, the method continuously uses the classifier to predict whether there is a community in the newest network identified as the continuing of the interested community. Whenever the answer is negative, an evolutionary event is presumed to have occurred and a new time slice is generated. Experimental results show that compared with existing time slicing methods, our proposed method achieves higher recognition rate for given redundancy ratio.
期刊介绍:
The journal aims to promote and communicate advances in big data research by providing a fast and high quality forum for researchers, practitioners and policy makers from the very many different communities working on, and with, this topic.
The journal will accept papers on foundational aspects in dealing with big data, as well as papers on specific Platforms and Technologies used to deal with big data. To promote Data Science and interdisciplinary collaboration between fields, and to showcase the benefits of data driven research, papers demonstrating applications of big data in domains as diverse as Geoscience, Social Web, Finance, e-Commerce, Health Care, Environment and Climate, Physics and Astronomy, Chemistry, life sciences and drug discovery, digital libraries and scientific publications, security and government will also be considered. Occasionally the journal may publish whitepapers on policies, standards and best practices.