Paulina Knees , Daniel E. López-Fogliani , Carlos Muñoz
{"title":"μνSSM和暗物质中惰性中微子的现象学意义","authors":"Paulina Knees , Daniel E. López-Fogliani , Carlos Muñoz","doi":"10.1016/j.astropartphys.2023.102865","DOIUrl":null,"url":null,"abstract":"<div><p>We analyze the role of sterile neutrinos in the framework of the <span><math><mrow><mi>μ</mi><mi>ν</mi></mrow></math></span>SSM, where the presence of right-handed neutrinos provides a simultaneous solution to <span><math><mi>μ</mi></math></span>- and <span><math><mi>ν</mi></math></span><span>-problems in supersymmetry<span>. We adopt a minimalistic approach, reproducing light neutrino masses and mixing angles at tree-level using just two right-handed neutrinos as part of the seesaw mechanism. A third right-handed neutrino does not contribute significantly to the mass of the three active ones, behaving as a sterile neutrino with a mass in the range keV-MeV. Furthermore, a sterile neutrino of about 10 keV can be a good candidate for dark matter with a lifetime larger than the age of the Universe. In particular, the three-body decay to active neutrinos gives the dominant contribution to its lifetime. The one-loop decay to gamma and active neutrino is subdominant, but relevant for observations such as astrophysical X-rays. We find regions of the parameter space of the </span></span><span><math><mrow><mi>μ</mi><mi>ν</mi></mrow></math></span>SSM, with different values of the sterile neutrino mass, fulfilling not only these constraints but also collider constraints from the Higgs sector.</p></div>","PeriodicalId":55439,"journal":{"name":"Astroparticle Physics","volume":"151 ","pages":"Article 102865"},"PeriodicalIF":4.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Phenomenological implications of sterile neutrinos in the μνSSM and dark matter\",\"authors\":\"Paulina Knees , Daniel E. López-Fogliani , Carlos Muñoz\",\"doi\":\"10.1016/j.astropartphys.2023.102865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We analyze the role of sterile neutrinos in the framework of the <span><math><mrow><mi>μ</mi><mi>ν</mi></mrow></math></span>SSM, where the presence of right-handed neutrinos provides a simultaneous solution to <span><math><mi>μ</mi></math></span>- and <span><math><mi>ν</mi></math></span><span>-problems in supersymmetry<span>. We adopt a minimalistic approach, reproducing light neutrino masses and mixing angles at tree-level using just two right-handed neutrinos as part of the seesaw mechanism. A third right-handed neutrino does not contribute significantly to the mass of the three active ones, behaving as a sterile neutrino with a mass in the range keV-MeV. Furthermore, a sterile neutrino of about 10 keV can be a good candidate for dark matter with a lifetime larger than the age of the Universe. In particular, the three-body decay to active neutrinos gives the dominant contribution to its lifetime. The one-loop decay to gamma and active neutrino is subdominant, but relevant for observations such as astrophysical X-rays. We find regions of the parameter space of the </span></span><span><math><mrow><mi>μ</mi><mi>ν</mi></mrow></math></span>SSM, with different values of the sterile neutrino mass, fulfilling not only these constraints but also collider constraints from the Higgs sector.</p></div>\",\"PeriodicalId\":55439,\"journal\":{\"name\":\"Astroparticle Physics\",\"volume\":\"151 \",\"pages\":\"Article 102865\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927650523000518\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927650523000518","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Phenomenological implications of sterile neutrinos in the μνSSM and dark matter
We analyze the role of sterile neutrinos in the framework of the SSM, where the presence of right-handed neutrinos provides a simultaneous solution to - and -problems in supersymmetry. We adopt a minimalistic approach, reproducing light neutrino masses and mixing angles at tree-level using just two right-handed neutrinos as part of the seesaw mechanism. A third right-handed neutrino does not contribute significantly to the mass of the three active ones, behaving as a sterile neutrino with a mass in the range keV-MeV. Furthermore, a sterile neutrino of about 10 keV can be a good candidate for dark matter with a lifetime larger than the age of the Universe. In particular, the three-body decay to active neutrinos gives the dominant contribution to its lifetime. The one-loop decay to gamma and active neutrino is subdominant, but relevant for observations such as astrophysical X-rays. We find regions of the parameter space of the SSM, with different values of the sterile neutrino mass, fulfilling not only these constraints but also collider constraints from the Higgs sector.
期刊介绍:
Astroparticle Physics publishes experimental and theoretical research papers in the interacting fields of Cosmic Ray Physics, Astronomy and Astrophysics, Cosmology and Particle Physics focusing on new developments in the following areas: High-energy cosmic-ray physics and astrophysics; Particle cosmology; Particle astrophysics; Related astrophysics: supernova, AGN, cosmic abundances, dark matter etc.; Gravitational waves; High-energy, VHE and UHE gamma-ray astronomy; High- and low-energy neutrino astronomy; Instrumentation and detector developments related to the above-mentioned fields.