{"title":"纳米颗粒给药系统在癌症治疗中的疗效综述","authors":"Karthikeyan Elumalai , Sivaneswari Srinivasan , Anandakumar Shanmugam","doi":"10.1016/j.bmt.2023.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>This review evaluates the literature on nanoparticle-based drug delivery systems for cancer treatment and assesses their efficacy. Nanoparticles have shown potential for improving anticancer agent delivery, reducing systemic toxicity, and enhancing therapeutic outcomes. Extensive studies have shown promising results in preclinical and clinical trials. However, challenges such as limited drug loading capacity, stability issues, and potential side effects need to be addressed to enhance clinical translation. Researchers are exploring strategies to improve drug loading capacity, such as modifying nanoparticle surfaces or developing novel drug encapsulation techniques. By increasing drug loading, the therapeutic efficacy of these systems can be significantly enhanced. Stability issues also pose a hurdle in clinical translation. To overcome stability issues, researchers are investigating methods to enhance the stability of nanoparticles, such as using protective coatings or optimising the formulation. Additionally, efforts are being made to minimise potential side effects by carefully selecting biocompatible materials for nanoparticle synthesis and conducting rigorous toxicity studies before moving forward with clinical trials.</p></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"5 ","pages":"Pages 109-122"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment\",\"authors\":\"Karthikeyan Elumalai , Sivaneswari Srinivasan , Anandakumar Shanmugam\",\"doi\":\"10.1016/j.bmt.2023.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This review evaluates the literature on nanoparticle-based drug delivery systems for cancer treatment and assesses their efficacy. Nanoparticles have shown potential for improving anticancer agent delivery, reducing systemic toxicity, and enhancing therapeutic outcomes. Extensive studies have shown promising results in preclinical and clinical trials. However, challenges such as limited drug loading capacity, stability issues, and potential side effects need to be addressed to enhance clinical translation. Researchers are exploring strategies to improve drug loading capacity, such as modifying nanoparticle surfaces or developing novel drug encapsulation techniques. By increasing drug loading, the therapeutic efficacy of these systems can be significantly enhanced. Stability issues also pose a hurdle in clinical translation. To overcome stability issues, researchers are investigating methods to enhance the stability of nanoparticles, such as using protective coatings or optimising the formulation. Additionally, efforts are being made to minimise potential side effects by carefully selecting biocompatible materials for nanoparticle synthesis and conducting rigorous toxicity studies before moving forward with clinical trials.</p></div>\",\"PeriodicalId\":100180,\"journal\":{\"name\":\"Biomedical Technology\",\"volume\":\"5 \",\"pages\":\"Pages 109-122\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949723X23000533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949723X23000533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment
This review evaluates the literature on nanoparticle-based drug delivery systems for cancer treatment and assesses their efficacy. Nanoparticles have shown potential for improving anticancer agent delivery, reducing systemic toxicity, and enhancing therapeutic outcomes. Extensive studies have shown promising results in preclinical and clinical trials. However, challenges such as limited drug loading capacity, stability issues, and potential side effects need to be addressed to enhance clinical translation. Researchers are exploring strategies to improve drug loading capacity, such as modifying nanoparticle surfaces or developing novel drug encapsulation techniques. By increasing drug loading, the therapeutic efficacy of these systems can be significantly enhanced. Stability issues also pose a hurdle in clinical translation. To overcome stability issues, researchers are investigating methods to enhance the stability of nanoparticles, such as using protective coatings or optimising the formulation. Additionally, efforts are being made to minimise potential side effects by carefully selecting biocompatible materials for nanoparticle synthesis and conducting rigorous toxicity studies before moving forward with clinical trials.