Leibovici Anat , Raizman Reut , Itzhaki Nofar , Tik Niv , Sapir Maayan , Tsarfaty Galia , Livny Abigail
{"title":"小脑在液体智能中的作用:功能磁共振成像研究","authors":"Leibovici Anat , Raizman Reut , Itzhaki Nofar , Tik Niv , Sapir Maayan , Tsarfaty Galia , Livny Abigail","doi":"10.1016/j.cogsys.2023.101178","DOIUrl":null,"url":null,"abstract":"<div><p>Traditionally, neuroimaging studies of fluid intelligence have focused on brain activation in frontal-parietal regions. In the past decade there has been accumulating evidence regarding the involvement of the cerebellum in higher cognitive function. In the current study we aimed to further investigate the role of the cerebellum in processing of fluid intelligence. We therefore scanned thirty-nine healthy participants (13 females and 26 males), recruited from the general population. Participant performed a novel abstract reasoning functional Magnetic Resonance Imaging task, modeled after stimuli from the advanced Raven's Progressive Matrices test. Analyses of both brain function and network architecture focusing on hubness were performed. We demonstrate activation in frontal and parietal well-known regions, together with an extensive activation in several cerebellar sub-regions. Moreover, four cerebellar regions served as crucial hub regions. Therefore, we provide evidence of the role of the cerebellum in fluid intelligence both by means of task brain activation and graph theory topology. Future studies should further assess in-depth the cerebellar contribution to cognitive processing in different brain disorders involving neural network alterations, allowing a better understanding of cognitive deficits.</p></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":"83 ","pages":"Article 101178"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of the cerebellum in fluid intelligence: An fMRI study\",\"authors\":\"Leibovici Anat , Raizman Reut , Itzhaki Nofar , Tik Niv , Sapir Maayan , Tsarfaty Galia , Livny Abigail\",\"doi\":\"10.1016/j.cogsys.2023.101178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traditionally, neuroimaging studies of fluid intelligence have focused on brain activation in frontal-parietal regions. In the past decade there has been accumulating evidence regarding the involvement of the cerebellum in higher cognitive function. In the current study we aimed to further investigate the role of the cerebellum in processing of fluid intelligence. We therefore scanned thirty-nine healthy participants (13 females and 26 males), recruited from the general population. Participant performed a novel abstract reasoning functional Magnetic Resonance Imaging task, modeled after stimuli from the advanced Raven's Progressive Matrices test. Analyses of both brain function and network architecture focusing on hubness were performed. We demonstrate activation in frontal and parietal well-known regions, together with an extensive activation in several cerebellar sub-regions. Moreover, four cerebellar regions served as crucial hub regions. Therefore, we provide evidence of the role of the cerebellum in fluid intelligence both by means of task brain activation and graph theory topology. Future studies should further assess in-depth the cerebellar contribution to cognitive processing in different brain disorders involving neural network alterations, allowing a better understanding of cognitive deficits.</p></div>\",\"PeriodicalId\":55242,\"journal\":{\"name\":\"Cognitive Systems Research\",\"volume\":\"83 \",\"pages\":\"Article 101178\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Systems Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389041723001122\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041723001122","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
The role of the cerebellum in fluid intelligence: An fMRI study
Traditionally, neuroimaging studies of fluid intelligence have focused on brain activation in frontal-parietal regions. In the past decade there has been accumulating evidence regarding the involvement of the cerebellum in higher cognitive function. In the current study we aimed to further investigate the role of the cerebellum in processing of fluid intelligence. We therefore scanned thirty-nine healthy participants (13 females and 26 males), recruited from the general population. Participant performed a novel abstract reasoning functional Magnetic Resonance Imaging task, modeled after stimuli from the advanced Raven's Progressive Matrices test. Analyses of both brain function and network architecture focusing on hubness were performed. We demonstrate activation in frontal and parietal well-known regions, together with an extensive activation in several cerebellar sub-regions. Moreover, four cerebellar regions served as crucial hub regions. Therefore, we provide evidence of the role of the cerebellum in fluid intelligence both by means of task brain activation and graph theory topology. Future studies should further assess in-depth the cerebellar contribution to cognitive processing in different brain disorders involving neural network alterations, allowing a better understanding of cognitive deficits.
期刊介绍:
Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial.
The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition.
Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.