Xiaolu Liu, Muliang Xiao, Yang Li, Zhongshan Chen, Hui Yang, Xiangke Wang
{"title":"从福岛放射性水中去除放射性核素的先进多孔材料和新兴技术","authors":"Xiaolu Liu, Muliang Xiao, Yang Li, Zhongshan Chen, Hui Yang, Xiangke Wang","doi":"10.1016/j.eehl.2023.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>Japan recently announced the plan to discharge over 1.2 million tons of radioactive water into the Pacific Ocean, which contained hazardous radionuclides such as <sup>60</sup>Co, <sup>90</sup>Sr, <sup>125</sup>Sb, <sup>129</sup>I, <sup>3</sup>H, <sup>137</sup>Cs, and <sup>99</sup>TcO<sub>4</sub><sup>−</sup>, etc. The contaminated water will pose an enormous threat to global ecosystems and human health. Developing materials and technologies for efficient radionuclide removal is highly desirable and arduous because of the extreme conditions, including super acidity or alkalinity, high ionic strength, and strong ionizing radiation. Recently, advanced porous material, such as porous POPs, MOFs, COFs, PAFs, etc., has shown promise of improved separation of radionuclides due to their intrinsic structural advantages. Furthermore, emerging technologies applied to radionuclide removal have also been summarized. In order to better deal with radionuclide contamination, higher requirements for the design of nanomaterials and technologies applied to practical radionuclide removal are proposed. Finally, we call for comprehensive implementation of strategies and strengthened cooperation to mitigate the harm caused by radioactive contamination to oceans, atmosphere, soil, and human health.</p></div>","PeriodicalId":29813,"journal":{"name":"Eco-Environment & Health","volume":"2 4","pages":"Pages 252-256"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Advanced porous materials and emerging technologies for radionuclides removal from Fukushima radioactive water\",\"authors\":\"Xiaolu Liu, Muliang Xiao, Yang Li, Zhongshan Chen, Hui Yang, Xiangke Wang\",\"doi\":\"10.1016/j.eehl.2023.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Japan recently announced the plan to discharge over 1.2 million tons of radioactive water into the Pacific Ocean, which contained hazardous radionuclides such as <sup>60</sup>Co, <sup>90</sup>Sr, <sup>125</sup>Sb, <sup>129</sup>I, <sup>3</sup>H, <sup>137</sup>Cs, and <sup>99</sup>TcO<sub>4</sub><sup>−</sup>, etc. The contaminated water will pose an enormous threat to global ecosystems and human health. Developing materials and technologies for efficient radionuclide removal is highly desirable and arduous because of the extreme conditions, including super acidity or alkalinity, high ionic strength, and strong ionizing radiation. Recently, advanced porous material, such as porous POPs, MOFs, COFs, PAFs, etc., has shown promise of improved separation of radionuclides due to their intrinsic structural advantages. Furthermore, emerging technologies applied to radionuclide removal have also been summarized. In order to better deal with radionuclide contamination, higher requirements for the design of nanomaterials and technologies applied to practical radionuclide removal are proposed. Finally, we call for comprehensive implementation of strategies and strengthened cooperation to mitigate the harm caused by radioactive contamination to oceans, atmosphere, soil, and human health.</p></div>\",\"PeriodicalId\":29813,\"journal\":{\"name\":\"Eco-Environment & Health\",\"volume\":\"2 4\",\"pages\":\"Pages 252-256\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eco-Environment & Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772985023000479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eco-Environment & Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772985023000479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advanced porous materials and emerging technologies for radionuclides removal from Fukushima radioactive water
Japan recently announced the plan to discharge over 1.2 million tons of radioactive water into the Pacific Ocean, which contained hazardous radionuclides such as 60Co, 90Sr, 125Sb, 129I, 3H, 137Cs, and 99TcO4−, etc. The contaminated water will pose an enormous threat to global ecosystems and human health. Developing materials and technologies for efficient radionuclide removal is highly desirable and arduous because of the extreme conditions, including super acidity or alkalinity, high ionic strength, and strong ionizing radiation. Recently, advanced porous material, such as porous POPs, MOFs, COFs, PAFs, etc., has shown promise of improved separation of radionuclides due to their intrinsic structural advantages. Furthermore, emerging technologies applied to radionuclide removal have also been summarized. In order to better deal with radionuclide contamination, higher requirements for the design of nanomaterials and technologies applied to practical radionuclide removal are proposed. Finally, we call for comprehensive implementation of strategies and strengthened cooperation to mitigate the harm caused by radioactive contamination to oceans, atmosphere, soil, and human health.
期刊介绍:
Eco-Environment & Health (EEH) is an international and multidisciplinary peer-reviewed journal designed for publications on the frontiers of the ecology, environment and health as well as their related disciplines. EEH focuses on the concept of “One Health” to promote green and sustainable development, dealing with the interactions among ecology, environment and health, and the underlying mechanisms and interventions. Our mission is to be one of the most important flagship journals in the field of environmental health.
Scopes
EEH covers a variety of research areas, including but not limited to ecology and biodiversity conservation, environmental behaviors and bioprocesses of emerging contaminants, human exposure and health effects, and evaluation, management and regulation of environmental risks. The key topics of EEH include:
1) Ecology and Biodiversity Conservation
Biodiversity
Ecological restoration
Ecological safety
Protected area
2) Environmental and Biological Fate of Emerging Contaminants
Environmental behaviors
Environmental processes
Environmental microbiology
3) Human Exposure and Health Effects
Environmental toxicology
Environmental epidemiology
Environmental health risk
Food safety
4) Evaluation, Management and Regulation of Environmental Risks
Chemical safety
Environmental policy
Health policy
Health economics
Environmental remediation