Leonardo V. Bastos , Rushikesh S. Ambekar , Chandra S. Tiwary , Douglas S. Galvao , Cristiano F. Woellner
{"title":"建筑互锁花瓣schwarzites的机械能吸收","authors":"Leonardo V. Bastos , Rushikesh S. Ambekar , Chandra S. Tiwary , Douglas S. Galvao , Cristiano F. Woellner","doi":"10.1016/j.cartre.2023.100299","DOIUrl":null,"url":null,"abstract":"<div><p>We carried out fully atomistic reactive molecular dynamics simulations to study the mechanical behavior of six newly proposed hybrid schwarzite-based structures (interlocked petal-schwarzites). Schwarzites are carbon crystalline nanostructures with negative Gaussian curvature created by mapping a TPMS (Triply Periodic Minimal Surface) with carbon rings containing six to eight atoms. Our simulations have shown that petal-schwarzite structures can withstand uni-axial compressive stress up to the order of GPa and can be compressed past 50 percent strain without structural collapse. Our most resistant hierarchical structure has a calculated compressive strength of 260 GPa and specific energy absorption (SEA) of 45.95 MJ/kg, while possessing a mass density of only 685 kg/m<sup>3</sup>. These results show that these structures could be excellent lightweight materials for applications that require mechanical energy absorption.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical energy absorption of architecturally interlocked petal-schwarzites\",\"authors\":\"Leonardo V. Bastos , Rushikesh S. Ambekar , Chandra S. Tiwary , Douglas S. Galvao , Cristiano F. Woellner\",\"doi\":\"10.1016/j.cartre.2023.100299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We carried out fully atomistic reactive molecular dynamics simulations to study the mechanical behavior of six newly proposed hybrid schwarzite-based structures (interlocked petal-schwarzites). Schwarzites are carbon crystalline nanostructures with negative Gaussian curvature created by mapping a TPMS (Triply Periodic Minimal Surface) with carbon rings containing six to eight atoms. Our simulations have shown that petal-schwarzite structures can withstand uni-axial compressive stress up to the order of GPa and can be compressed past 50 percent strain without structural collapse. Our most resistant hierarchical structure has a calculated compressive strength of 260 GPa and specific energy absorption (SEA) of 45.95 MJ/kg, while possessing a mass density of only 685 kg/m<sup>3</sup>. These results show that these structures could be excellent lightweight materials for applications that require mechanical energy absorption.</p></div>\",\"PeriodicalId\":52629,\"journal\":{\"name\":\"Carbon Trends\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667056923000548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056923000548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanical energy absorption of architecturally interlocked petal-schwarzites
We carried out fully atomistic reactive molecular dynamics simulations to study the mechanical behavior of six newly proposed hybrid schwarzite-based structures (interlocked petal-schwarzites). Schwarzites are carbon crystalline nanostructures with negative Gaussian curvature created by mapping a TPMS (Triply Periodic Minimal Surface) with carbon rings containing six to eight atoms. Our simulations have shown that petal-schwarzite structures can withstand uni-axial compressive stress up to the order of GPa and can be compressed past 50 percent strain without structural collapse. Our most resistant hierarchical structure has a calculated compressive strength of 260 GPa and specific energy absorption (SEA) of 45.95 MJ/kg, while possessing a mass density of only 685 kg/m3. These results show that these structures could be excellent lightweight materials for applications that require mechanical energy absorption.