Alex Roschli , Brian Post , Randal Mueller , Vito Gervasi , Phillip Chesser , Jesse Heineman , Rebecca Brink
{"title":"用于低水头水电的大幅面复合增材制造","authors":"Alex Roschli , Brian Post , Randal Mueller , Vito Gervasi , Phillip Chesser , Jesse Heineman , Rebecca Brink","doi":"10.1016/j.addlet.2023.100170","DOIUrl":null,"url":null,"abstract":"<div><p>Hydropower with a small elevation change from inlet to outlet, known as “low-head” hydropower, is a relatively untapped resource for reliable green power generation. One major barrier to entry is the cost of the components needed to generate the power. Each installation site is unique, with various head levels, flow rates, and other unique site characteristics that drive up the cost of development and installation. As a result, custom-made components are necessary because the sites are intrinsically inefficient. However, customized parts are generally more expensive to manufacture than ready-made parts. Often times, the cost of custom-made components is so high that the low-head hydropower installation becomes non-viable. Additive manufacturing offers the ability to make custom components, ideal for one-off applications, at low costs that are well suited for the needs of low-head hydropower. Indirect additive manufacturing, such as making tools or dies rather than end use components, can also be used to make low-cost composite tooling as needed for these custom applications. This paper explores the use of additive manufacturing, both directly and indirectly, to produce the components of a turbine system for a low-head hydropower site. The parts were designed to form a unique modular system, which saves time for future designs and iterations. The system has operated for more than three years without failure at a test site in Wisconsin, USA. This work serves as a basis for future application of AM to low-head systems, in which the modular components can be customized for each unique hydropower installation.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large Format Composite Additive Manufacturing for Low-Head Hydropower\",\"authors\":\"Alex Roschli , Brian Post , Randal Mueller , Vito Gervasi , Phillip Chesser , Jesse Heineman , Rebecca Brink\",\"doi\":\"10.1016/j.addlet.2023.100170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydropower with a small elevation change from inlet to outlet, known as “low-head” hydropower, is a relatively untapped resource for reliable green power generation. One major barrier to entry is the cost of the components needed to generate the power. Each installation site is unique, with various head levels, flow rates, and other unique site characteristics that drive up the cost of development and installation. As a result, custom-made components are necessary because the sites are intrinsically inefficient. However, customized parts are generally more expensive to manufacture than ready-made parts. Often times, the cost of custom-made components is so high that the low-head hydropower installation becomes non-viable. Additive manufacturing offers the ability to make custom components, ideal for one-off applications, at low costs that are well suited for the needs of low-head hydropower. Indirect additive manufacturing, such as making tools or dies rather than end use components, can also be used to make low-cost composite tooling as needed for these custom applications. This paper explores the use of additive manufacturing, both directly and indirectly, to produce the components of a turbine system for a low-head hydropower site. The parts were designed to form a unique modular system, which saves time for future designs and iterations. The system has operated for more than three years without failure at a test site in Wisconsin, USA. This work serves as a basis for future application of AM to low-head systems, in which the modular components can be customized for each unique hydropower installation.</p></div>\",\"PeriodicalId\":72068,\"journal\":{\"name\":\"Additive manufacturing letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772369023000506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369023000506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Large Format Composite Additive Manufacturing for Low-Head Hydropower
Hydropower with a small elevation change from inlet to outlet, known as “low-head” hydropower, is a relatively untapped resource for reliable green power generation. One major barrier to entry is the cost of the components needed to generate the power. Each installation site is unique, with various head levels, flow rates, and other unique site characteristics that drive up the cost of development and installation. As a result, custom-made components are necessary because the sites are intrinsically inefficient. However, customized parts are generally more expensive to manufacture than ready-made parts. Often times, the cost of custom-made components is so high that the low-head hydropower installation becomes non-viable. Additive manufacturing offers the ability to make custom components, ideal for one-off applications, at low costs that are well suited for the needs of low-head hydropower. Indirect additive manufacturing, such as making tools or dies rather than end use components, can also be used to make low-cost composite tooling as needed for these custom applications. This paper explores the use of additive manufacturing, both directly and indirectly, to produce the components of a turbine system for a low-head hydropower site. The parts were designed to form a unique modular system, which saves time for future designs and iterations. The system has operated for more than three years without failure at a test site in Wisconsin, USA. This work serves as a basis for future application of AM to low-head systems, in which the modular components can be customized for each unique hydropower installation.