{"title":"用广义幂方法求解广义正交Procrustes问题的近最优界","authors":"Shuyang Ling","doi":"10.1016/j.acha.2023.04.008","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Given multiple point clouds, how to find the rigid transform (rotation, reflection, and shifting) such that these point clouds are well aligned? This problem, known as the generalized orthogonal Procrustes problem (GOPP), has found numerous applications in statistics<span>, computer vision, and imaging science. While one commonly-used method is finding the least squares estimator, it is generally an NP-hard problem to obtain the least squares estimator exactly due to the notorious nonconvexity. In this work, we apply the semidefinite programming (SDP) relaxation and the generalized power method to solve this generalized orthogonal Procrustes problem. In particular, we assume the data are generated from a signal-plus-noise model: each observed point cloud is a noisy copy of the same unknown point cloud transformed by an unknown </span></span>orthogonal matrix<span> and also corrupted by additive Gaussian noise. We show that the generalized power method (equivalently alternating minimization algorithm) with spectral initialization converges to the unique global optimum to the SDP relaxation, provided that the signal-to-noise ratio is high. Moreover, this limiting point is exactly the least squares estimator and also the maximum likelihood estimator. Our theoretical bound is near-optimal in terms of the information-theoretic limit (only loose by a factor of the dimension and a log factor). Our results significantly improve the state-of-the-art results on the tightness of the SDP relaxation for the generalized orthogonal Procrustes problem, an open problem posed by Bandeira et al. (2014) </span></span><span>[8]</span>.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"66 ","pages":"Pages 62-100"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Near-optimal bounds for generalized orthogonal Procrustes problem via generalized power method\",\"authors\":\"Shuyang Ling\",\"doi\":\"10.1016/j.acha.2023.04.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Given multiple point clouds, how to find the rigid transform (rotation, reflection, and shifting) such that these point clouds are well aligned? This problem, known as the generalized orthogonal Procrustes problem (GOPP), has found numerous applications in statistics<span>, computer vision, and imaging science. While one commonly-used method is finding the least squares estimator, it is generally an NP-hard problem to obtain the least squares estimator exactly due to the notorious nonconvexity. In this work, we apply the semidefinite programming (SDP) relaxation and the generalized power method to solve this generalized orthogonal Procrustes problem. In particular, we assume the data are generated from a signal-plus-noise model: each observed point cloud is a noisy copy of the same unknown point cloud transformed by an unknown </span></span>orthogonal matrix<span> and also corrupted by additive Gaussian noise. We show that the generalized power method (equivalently alternating minimization algorithm) with spectral initialization converges to the unique global optimum to the SDP relaxation, provided that the signal-to-noise ratio is high. Moreover, this limiting point is exactly the least squares estimator and also the maximum likelihood estimator. Our theoretical bound is near-optimal in terms of the information-theoretic limit (only loose by a factor of the dimension and a log factor). Our results significantly improve the state-of-the-art results on the tightness of the SDP relaxation for the generalized orthogonal Procrustes problem, an open problem posed by Bandeira et al. (2014) </span></span><span>[8]</span>.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"66 \",\"pages\":\"Pages 62-100\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520323000428\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520323000428","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Near-optimal bounds for generalized orthogonal Procrustes problem via generalized power method
Given multiple point clouds, how to find the rigid transform (rotation, reflection, and shifting) such that these point clouds are well aligned? This problem, known as the generalized orthogonal Procrustes problem (GOPP), has found numerous applications in statistics, computer vision, and imaging science. While one commonly-used method is finding the least squares estimator, it is generally an NP-hard problem to obtain the least squares estimator exactly due to the notorious nonconvexity. In this work, we apply the semidefinite programming (SDP) relaxation and the generalized power method to solve this generalized orthogonal Procrustes problem. In particular, we assume the data are generated from a signal-plus-noise model: each observed point cloud is a noisy copy of the same unknown point cloud transformed by an unknown orthogonal matrix and also corrupted by additive Gaussian noise. We show that the generalized power method (equivalently alternating minimization algorithm) with spectral initialization converges to the unique global optimum to the SDP relaxation, provided that the signal-to-noise ratio is high. Moreover, this limiting point is exactly the least squares estimator and also the maximum likelihood estimator. Our theoretical bound is near-optimal in terms of the information-theoretic limit (only loose by a factor of the dimension and a log factor). Our results significantly improve the state-of-the-art results on the tightness of the SDP relaxation for the generalized orthogonal Procrustes problem, an open problem posed by Bandeira et al. (2014) [8].
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.