Hao Zhang , Haiqiang Yang , Fang Yuan, Bo Liu, Qiang Yang
{"title":"用于3D-NAND结构制造的Si3N4选择性湿法蚀刻中防止氧化物沉淀:气泡的作用","authors":"Hao Zhang , Haiqiang Yang , Fang Yuan, Bo Liu, Qiang Yang","doi":"10.1016/j.mee.2023.112104","DOIUrl":null,"url":null,"abstract":"<div><p>Selective wet etching of <span><math><msub><mi>Si</mi><mn>3</mn></msub><msub><mi>N</mi><mn>4</mn></msub></math></span> is a critical process in the fabrication of 3D-NAND structures; however, it faces a oxide precipitation problem that significantly deteriorates the remaining structure morphology. A recent study by Kim et al.(Kim et al., 2022 [<span>1</span>]<sup>)</sup> showed that generating CO<sub>2</sub><span><span> bubbles during the wet etching process efficiently solves the precipitation problem in the fabrication of a 128 multi-layer 3D-NAND structure. In this study, we numerically investigated the multiscale diffusive transport<span> of oxides in the etching process via three different simplified simulations at different scales to reveal the underlying mechanism. We found that mass transport within the multilayer structures alone cannot contribute to the oxide </span></span>precipitation behavior. Macroscopic transport from the wafer-etchant interface to the bulk must be considered since it contributes to a high oxide concentration at the wafer-etchant surface, which further increases the concentration within the trenches, leading to the precipitation problem. Through the conjecture oxide transport simulation, we found that the large bubbles generated from the reaction agitate the surrounding liquid and dramatically reduce the oxide concentration at the wafer-etchant surface by one order of magnitude, thereby solving the precipitation problem. Our findings clearly explain the experimental results reported by Kim et al. and will further benefit the development of process-intensification technologies in wet etching.</span></p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preventing oxide precipitation in selective wet etching of Si3N4 for 3D-NAND structure fabrication: The role of bubbles\",\"authors\":\"Hao Zhang , Haiqiang Yang , Fang Yuan, Bo Liu, Qiang Yang\",\"doi\":\"10.1016/j.mee.2023.112104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Selective wet etching of <span><math><msub><mi>Si</mi><mn>3</mn></msub><msub><mi>N</mi><mn>4</mn></msub></math></span> is a critical process in the fabrication of 3D-NAND structures; however, it faces a oxide precipitation problem that significantly deteriorates the remaining structure morphology. A recent study by Kim et al.(Kim et al., 2022 [<span>1</span>]<sup>)</sup> showed that generating CO<sub>2</sub><span><span> bubbles during the wet etching process efficiently solves the precipitation problem in the fabrication of a 128 multi-layer 3D-NAND structure. In this study, we numerically investigated the multiscale diffusive transport<span> of oxides in the etching process via three different simplified simulations at different scales to reveal the underlying mechanism. We found that mass transport within the multilayer structures alone cannot contribute to the oxide </span></span>precipitation behavior. Macroscopic transport from the wafer-etchant interface to the bulk must be considered since it contributes to a high oxide concentration at the wafer-etchant surface, which further increases the concentration within the trenches, leading to the precipitation problem. Through the conjecture oxide transport simulation, we found that the large bubbles generated from the reaction agitate the surrounding liquid and dramatically reduce the oxide concentration at the wafer-etchant surface by one order of magnitude, thereby solving the precipitation problem. Our findings clearly explain the experimental results reported by Kim et al. and will further benefit the development of process-intensification technologies in wet etching.</span></p></div>\",\"PeriodicalId\":18557,\"journal\":{\"name\":\"Microelectronic Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167931723001697\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931723001697","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Preventing oxide precipitation in selective wet etching of Si3N4 for 3D-NAND structure fabrication: The role of bubbles
Selective wet etching of is a critical process in the fabrication of 3D-NAND structures; however, it faces a oxide precipitation problem that significantly deteriorates the remaining structure morphology. A recent study by Kim et al.(Kim et al., 2022 [1]) showed that generating CO2 bubbles during the wet etching process efficiently solves the precipitation problem in the fabrication of a 128 multi-layer 3D-NAND structure. In this study, we numerically investigated the multiscale diffusive transport of oxides in the etching process via three different simplified simulations at different scales to reveal the underlying mechanism. We found that mass transport within the multilayer structures alone cannot contribute to the oxide precipitation behavior. Macroscopic transport from the wafer-etchant interface to the bulk must be considered since it contributes to a high oxide concentration at the wafer-etchant surface, which further increases the concentration within the trenches, leading to the precipitation problem. Through the conjecture oxide transport simulation, we found that the large bubbles generated from the reaction agitate the surrounding liquid and dramatically reduce the oxide concentration at the wafer-etchant surface by one order of magnitude, thereby solving the precipitation problem. Our findings clearly explain the experimental results reported by Kim et al. and will further benefit the development of process-intensification technologies in wet etching.
期刊介绍:
Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.