从强磁通量斑块的时间依赖性看区域外核运动学

IF 2.4 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Filipe Terra-Nova , Ingo Wardinski
{"title":"从强磁通量斑块的时间依赖性看区域外核运动学","authors":"Filipe Terra-Nova ,&nbsp;Ingo Wardinski","doi":"10.1016/j.pepi.2023.107106","DOIUrl":null,"url":null,"abstract":"<div><p>Observations of the geomagnetic field by surface observatories and dedicated satellite missions such as the Swarm constellation provide constraints on the dynamics in Earth's outer core. In particular, global core flow models estimated by inversion of the radial magnetic induction equation provide an image of the circulation of the electrically conductive fluid at the top of the core. However, in these models the poloidal flow is much less robust than the toroidal core flow. Here, we infer regional outer core kinematics from the temporal variability of high-latitude intense geomagnetic flux patches. We develop an algorithm to fit anisotropic 2D-Gaussians to the shape of those flux patches in order to infer their area, amplitude and level of anisotropy. The temporal variabilities of these properties are used to quantify contraction, expansion, amplification, weakening and horizontal shear. Comparisons with idealized kinematic scenarios based on synthetic field and flow models allow to infer regional outer core kinematics. We found that some geomagnetic flux patches exhibit expansion and weakening corresponding to fluid upwellings, whereas other patches exhibit contraction and intensification corresponding to downwellings. In both cases the patches' area and amplitude relations follow hyperbolic curves. Our results show that the geomagnetic flux patches are affected by upwelling more often than by downwelling during the historical period. Equatorially symmetric poloidal flow prior to <span><math><mo>≈</mo><mn>1910</mn></math></span> is inferred for the western intense patches. Kinematic scenarios where the field and flow structures centers coincide failed to reproduce the geomagnetic flux patches behavior. We recover the flux concentration efficiency of intense geomagnetic flux patches with an upwelling that resides two times its radius size away from the center of the flux patch. We also found a significant level of anisotropy over long periods for the historical geomagnetic flux patches. Anisotropic magnetic flux patches that are elongated in the direction of the shear flow may explain the east-west oriented present-day field at high latitudes of the southern Hemisphere. Overall, stretching effects at the top of the core can be deduced from our analysis of regional SV and allow further inferences on the poloidal part of the core flow.</p></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"344 ","pages":"Article 107106"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regional outer core kinematics from the time dependence of intense geomagnetic flux patches\",\"authors\":\"Filipe Terra-Nova ,&nbsp;Ingo Wardinski\",\"doi\":\"10.1016/j.pepi.2023.107106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Observations of the geomagnetic field by surface observatories and dedicated satellite missions such as the Swarm constellation provide constraints on the dynamics in Earth's outer core. In particular, global core flow models estimated by inversion of the radial magnetic induction equation provide an image of the circulation of the electrically conductive fluid at the top of the core. However, in these models the poloidal flow is much less robust than the toroidal core flow. Here, we infer regional outer core kinematics from the temporal variability of high-latitude intense geomagnetic flux patches. We develop an algorithm to fit anisotropic 2D-Gaussians to the shape of those flux patches in order to infer their area, amplitude and level of anisotropy. The temporal variabilities of these properties are used to quantify contraction, expansion, amplification, weakening and horizontal shear. Comparisons with idealized kinematic scenarios based on synthetic field and flow models allow to infer regional outer core kinematics. We found that some geomagnetic flux patches exhibit expansion and weakening corresponding to fluid upwellings, whereas other patches exhibit contraction and intensification corresponding to downwellings. In both cases the patches' area and amplitude relations follow hyperbolic curves. Our results show that the geomagnetic flux patches are affected by upwelling more often than by downwelling during the historical period. Equatorially symmetric poloidal flow prior to <span><math><mo>≈</mo><mn>1910</mn></math></span> is inferred for the western intense patches. Kinematic scenarios where the field and flow structures centers coincide failed to reproduce the geomagnetic flux patches behavior. We recover the flux concentration efficiency of intense geomagnetic flux patches with an upwelling that resides two times its radius size away from the center of the flux patch. We also found a significant level of anisotropy over long periods for the historical geomagnetic flux patches. Anisotropic magnetic flux patches that are elongated in the direction of the shear flow may explain the east-west oriented present-day field at high latitudes of the southern Hemisphere. Overall, stretching effects at the top of the core can be deduced from our analysis of regional SV and allow further inferences on the poloidal part of the core flow.</p></div>\",\"PeriodicalId\":54614,\"journal\":{\"name\":\"Physics of the Earth and Planetary Interiors\",\"volume\":\"344 \",\"pages\":\"Article 107106\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Earth and Planetary Interiors\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031920123001322\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Earth and Planetary Interiors","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031920123001322","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

地面天文台和Swarm星座等专用卫星任务对地磁场的观测为地核的动力学提供了限制。特别地,通过径向磁感应方程的反演估计的全局堆芯流模型提供了堆芯顶部的导电流体循环的图像。然而,在这些模型中,极向流的鲁棒性远不如环形核心流。在这里,我们从高纬度强地磁通量斑块的时间变化推断出区域外核运动学。我们开发了一种算法,将各向异性的二维高斯拟合到这些通量斑块的形状,以推断它们的面积、振幅和各向异性水平。这些特性的时间变异性用于量化收缩、膨胀、放大、弱化和水平剪切。与基于合成场和流模型的理想运动学场景进行比较,可以推断区域外核运动学。我们发现,一些地磁通量斑块表现出与流体上行相对应的膨胀和减弱,而其他斑块则表现出与下行相对应的收缩和增强。在这两种情况下,斑块的面积和振幅关系都遵循双曲线。我们的结果表明,在历史时期,地磁通量斑块受上升流的影响比受下降流的影响更频繁。推断出西部强斑块在≈1910年以前存在赤道对称极向流。场和流结构中心重合的运动学场景未能再现地磁通量斑块的行为。我们恢复了强地磁通量斑块的通量集中效率,其上升流位于距离通量斑块中心两倍于其半径大小的地方。我们还发现,历史地磁通量斑块在长时间内具有显著的各向异性。沿剪切流方向拉长的各向异性磁通片可以解释南半球高纬度地区东西向的现今磁场。总的来说,可以从我们对区域SV的分析中推断出堆芯顶部的拉伸效应,并允许对堆芯流的极向部分进行进一步推断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regional outer core kinematics from the time dependence of intense geomagnetic flux patches

Observations of the geomagnetic field by surface observatories and dedicated satellite missions such as the Swarm constellation provide constraints on the dynamics in Earth's outer core. In particular, global core flow models estimated by inversion of the radial magnetic induction equation provide an image of the circulation of the electrically conductive fluid at the top of the core. However, in these models the poloidal flow is much less robust than the toroidal core flow. Here, we infer regional outer core kinematics from the temporal variability of high-latitude intense geomagnetic flux patches. We develop an algorithm to fit anisotropic 2D-Gaussians to the shape of those flux patches in order to infer their area, amplitude and level of anisotropy. The temporal variabilities of these properties are used to quantify contraction, expansion, amplification, weakening and horizontal shear. Comparisons with idealized kinematic scenarios based on synthetic field and flow models allow to infer regional outer core kinematics. We found that some geomagnetic flux patches exhibit expansion and weakening corresponding to fluid upwellings, whereas other patches exhibit contraction and intensification corresponding to downwellings. In both cases the patches' area and amplitude relations follow hyperbolic curves. Our results show that the geomagnetic flux patches are affected by upwelling more often than by downwelling during the historical period. Equatorially symmetric poloidal flow prior to 1910 is inferred for the western intense patches. Kinematic scenarios where the field and flow structures centers coincide failed to reproduce the geomagnetic flux patches behavior. We recover the flux concentration efficiency of intense geomagnetic flux patches with an upwelling that resides two times its radius size away from the center of the flux patch. We also found a significant level of anisotropy over long periods for the historical geomagnetic flux patches. Anisotropic magnetic flux patches that are elongated in the direction of the shear flow may explain the east-west oriented present-day field at high latitudes of the southern Hemisphere. Overall, stretching effects at the top of the core can be deduced from our analysis of regional SV and allow further inferences on the poloidal part of the core flow.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of the Earth and Planetary Interiors
Physics of the Earth and Planetary Interiors 地学天文-地球化学与地球物理
CiteScore
5.00
自引率
4.30%
发文量
78
审稿时长
18.5 weeks
期刊介绍: Launched in 1968 to fill the need for an international journal in the field of planetary physics, geodesy and geophysics, Physics of the Earth and Planetary Interiors has now grown to become important reading matter for all geophysicists. It is the only journal to be entirely devoted to the physical and chemical processes of planetary interiors. Original research papers, review articles, short communications and book reviews are all published on a regular basis; and from time to time special issues of the journal are devoted to the publication of the proceedings of symposia and congresses which the editors feel will be of particular interest to the reader.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信