有界态简约距离的近线性核

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Elise Deen , Leo van Iersel , Remie Janssen , Mark Jones , Yukihiro Murakami , Norbert Zeh
{"title":"有界态简约距离的近线性核","authors":"Elise Deen ,&nbsp;Leo van Iersel ,&nbsp;Remie Janssen ,&nbsp;Mark Jones ,&nbsp;Yukihiro Murakami ,&nbsp;Norbert Zeh","doi":"10.1016/j.jcss.2023.103477","DOIUrl":null,"url":null,"abstract":"<div><p>The maximum parsimony distance <span><math><msub><mrow><mi>d</mi></mrow><mrow><mtext>MP</mtext></mrow></msub><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> and the bounded-state maximum parsimony distance <span><math><msubsup><mrow><mi>d</mi></mrow><mrow><mtext>MP</mtext></mrow><mrow><mi>t</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> measure the difference between two phylogenetic trees <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> in terms of the maximum difference between their parsimony scores for any character (with <em>t</em> a bound on the number of states in the character, in the case of <span><math><msubsup><mrow><mi>d</mi></mrow><mrow><mtext>MP</mtext></mrow><mrow><mi>t</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>). While computing <span><math><msub><mrow><mi>d</mi></mrow><mrow><mtext>MP</mtext></mrow></msub><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> was previously shown to be fixed-parameter tractable with a linear kernel, no such result was known for <span><math><msubsup><mrow><mi>d</mi></mrow><mrow><mtext>MP</mtext></mrow><mrow><mi>t</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. In this paper, we prove that computing <span><math><msubsup><mrow><mi>d</mi></mrow><mrow><mtext>MP</mtext></mrow><mrow><mi>t</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> is fixed-parameter tractable for all <em>t</em>. Specifically, we prove that this problem has a kernel of size <span><math><mi>O</mi><mo>(</mo><mi>k</mi><mi>lg</mi><mo>⁡</mo><mi>k</mi><mo>)</mo></math></span>, where <span><math><mi>k</mi><mo>=</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mtext>MP</mtext></mrow><mrow><mi>t</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. As the primary analysis tool, we introduce the concept of leg-disjoint incompatible quartets, which may be of independent interest.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"140 ","pages":"Article 103477"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A near-linear kernel for bounded-state parsimony distance\",\"authors\":\"Elise Deen ,&nbsp;Leo van Iersel ,&nbsp;Remie Janssen ,&nbsp;Mark Jones ,&nbsp;Yukihiro Murakami ,&nbsp;Norbert Zeh\",\"doi\":\"10.1016/j.jcss.2023.103477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The maximum parsimony distance <span><math><msub><mrow><mi>d</mi></mrow><mrow><mtext>MP</mtext></mrow></msub><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> and the bounded-state maximum parsimony distance <span><math><msubsup><mrow><mi>d</mi></mrow><mrow><mtext>MP</mtext></mrow><mrow><mi>t</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> measure the difference between two phylogenetic trees <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> in terms of the maximum difference between their parsimony scores for any character (with <em>t</em> a bound on the number of states in the character, in the case of <span><math><msubsup><mrow><mi>d</mi></mrow><mrow><mtext>MP</mtext></mrow><mrow><mi>t</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>). While computing <span><math><msub><mrow><mi>d</mi></mrow><mrow><mtext>MP</mtext></mrow></msub><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> was previously shown to be fixed-parameter tractable with a linear kernel, no such result was known for <span><math><msubsup><mrow><mi>d</mi></mrow><mrow><mtext>MP</mtext></mrow><mrow><mi>t</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. In this paper, we prove that computing <span><math><msubsup><mrow><mi>d</mi></mrow><mrow><mtext>MP</mtext></mrow><mrow><mi>t</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> is fixed-parameter tractable for all <em>t</em>. Specifically, we prove that this problem has a kernel of size <span><math><mi>O</mi><mo>(</mo><mi>k</mi><mi>lg</mi><mo>⁡</mo><mi>k</mi><mo>)</mo></math></span>, where <span><math><mi>k</mi><mo>=</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mtext>MP</mtext></mrow><mrow><mi>t</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. As the primary analysis tool, we introduce the concept of leg-disjoint incompatible quartets, which may be of independent interest.</p></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"140 \",\"pages\":\"Article 103477\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002200002300082X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002200002300082X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

最大简约距离dMP(T1,T2。虽然计算dMP(T1,T2)之前被证明是可以用线性核处理的固定参数,但对于dMP(T1,T2)没有这样的结果是已知的。在本文中,我们证明了计算dMPt(T1,T2)对于所有t都是可处理的固定参数。具体地,我们证明这个问题具有大小为O(klg⁡k) ,其中k=dMPt(T1,T2)。作为主要的分析工具,我们引入了腿不相交不相容四元组的概念,它可能具有独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A near-linear kernel for bounded-state parsimony distance

The maximum parsimony distance dMP(T1,T2) and the bounded-state maximum parsimony distance dMPt(T1,T2) measure the difference between two phylogenetic trees T1,T2 in terms of the maximum difference between their parsimony scores for any character (with t a bound on the number of states in the character, in the case of dMPt(T1,T2)). While computing dMP(T1,T2) was previously shown to be fixed-parameter tractable with a linear kernel, no such result was known for dMPt(T1,T2). In this paper, we prove that computing dMPt(T1,T2) is fixed-parameter tractable for all t. Specifically, we prove that this problem has a kernel of size O(klgk), where k=dMPt(T1,T2). As the primary analysis tool, we introduce the concept of leg-disjoint incompatible quartets, which may be of independent interest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信