通过边收缩减少顶点覆盖数

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Paloma T. Lima , Vinicius F. dos Santos , Ignasi Sau , Uéverton S. Souza , Prafullkumar Tale
{"title":"通过边收缩减少顶点覆盖数","authors":"Paloma T. Lima ,&nbsp;Vinicius F. dos Santos ,&nbsp;Ignasi Sau ,&nbsp;Uéverton S. Souza ,&nbsp;Prafullkumar Tale","doi":"10.1016/j.jcss.2023.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>Given a graph <em>G</em> on <em>n</em> vertices and two integers <em>k</em> and <em>d</em>, the <span>Contraction(<span>vc</span>)</span> problem asks whether one can contract at most <em>k</em> edges to reduce the vertex cover number of <em>G</em> by at least <em>d</em>. Recently, Lima et al. [JCSS 2021] proved that <span>Contraction(<span>vc</span>)</span> admits an <span>XP</span> algorithm running in time <span><math><mi>f</mi><mo>(</mo><mi>d</mi><mo>)</mo><mo>⋅</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mi>d</mi><mo>)</mo></mrow></msup></math></span>. They asked whether this problem is <span>FPT</span> under this parameterization. In this article, we prove that: (i) <span>Contraction(<span>vc</span>)</span> is <span>W</span>[1]-<span>hard</span> parameterized by <span><math><mi>k</mi><mo>+</mo><mi>d</mi></math></span>. Moreover, unless the <span>ETH</span> fails, the problem does not admit an algorithm running in time <span><math><mi>f</mi><mo>(</mo><mi>k</mi><mo>+</mo><mi>d</mi><mo>)</mo><mo>⋅</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>o</mi><mo>(</mo><mi>k</mi><mo>+</mo><mi>d</mi><mo>)</mo></mrow></msup></math></span> for any function <em>f</em>. This answers negatively the open question stated in Lima et al. [JCSS 2021]. (ii) <span>Contraction(<span>vc</span>)</span> is <span>NP</span>-<span>hard</span> even when <span><math><mi>k</mi><mo>=</mo><mi>d</mi></math></span>. (iii) <span>Contraction(<span>vc</span>)</span> can be solved in time <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>d</mi><mo>)</mo></mrow></msup><mo>⋅</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>k</mi><mo>−</mo><mi>d</mi><mo>+</mo><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>. This improves the algorithm of Lima et al. [JCSS 2021], and shows that when <span><math><mi>k</mi><mo>=</mo><mi>d</mi></math></span>, <span>Contraction(<span>vc</span>)</span> is <span>FPT</span> parameterized by <em>d</em> (or by <em>k</em>).</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"136 ","pages":"Pages 63-87"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing the vertex cover number via edge contractions\",\"authors\":\"Paloma T. Lima ,&nbsp;Vinicius F. dos Santos ,&nbsp;Ignasi Sau ,&nbsp;Uéverton S. Souza ,&nbsp;Prafullkumar Tale\",\"doi\":\"10.1016/j.jcss.2023.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a graph <em>G</em> on <em>n</em> vertices and two integers <em>k</em> and <em>d</em>, the <span>Contraction(<span>vc</span>)</span> problem asks whether one can contract at most <em>k</em> edges to reduce the vertex cover number of <em>G</em> by at least <em>d</em>. Recently, Lima et al. [JCSS 2021] proved that <span>Contraction(<span>vc</span>)</span> admits an <span>XP</span> algorithm running in time <span><math><mi>f</mi><mo>(</mo><mi>d</mi><mo>)</mo><mo>⋅</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mi>d</mi><mo>)</mo></mrow></msup></math></span>. They asked whether this problem is <span>FPT</span> under this parameterization. In this article, we prove that: (i) <span>Contraction(<span>vc</span>)</span> is <span>W</span>[1]-<span>hard</span> parameterized by <span><math><mi>k</mi><mo>+</mo><mi>d</mi></math></span>. Moreover, unless the <span>ETH</span> fails, the problem does not admit an algorithm running in time <span><math><mi>f</mi><mo>(</mo><mi>k</mi><mo>+</mo><mi>d</mi><mo>)</mo><mo>⋅</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>o</mi><mo>(</mo><mi>k</mi><mo>+</mo><mi>d</mi><mo>)</mo></mrow></msup></math></span> for any function <em>f</em>. This answers negatively the open question stated in Lima et al. [JCSS 2021]. (ii) <span>Contraction(<span>vc</span>)</span> is <span>NP</span>-<span>hard</span> even when <span><math><mi>k</mi><mo>=</mo><mi>d</mi></math></span>. (iii) <span>Contraction(<span>vc</span>)</span> can be solved in time <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>d</mi><mo>)</mo></mrow></msup><mo>⋅</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>k</mi><mo>−</mo><mi>d</mi><mo>+</mo><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>. This improves the algorithm of Lima et al. [JCSS 2021], and shows that when <span><math><mi>k</mi><mo>=</mo><mi>d</mi></math></span>, <span>Contraction(<span>vc</span>)</span> is <span>FPT</span> parameterized by <em>d</em> (or by <em>k</em>).</p></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"136 \",\"pages\":\"Pages 63-87\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000023000302\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000023000302","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

给定一个图G在n个顶点和两个整数k和d上,收缩(vc)问题询问是否可以收缩最多k条边,以将G的顶点覆盖数减少至少d。最近,Lima等人[JCSS 2021]证明了收缩(vc)允许XP算法在时间f(d)·nO(d)内运行。他们询问在这个参数化条件下这个问题是否是FPT。在本文中,我们证明了:(i)收缩(vc)是由k+d硬参数化的W[1]。此外,除非ETH失败,否则该问题不允许任何函数f的算法在时间f(k+d)-no(k+d)内运行。这否定了Lima等人[JCSS 2021]中提出的开放问题。(ii)收缩(vc)是NP难的,即使当k=d时也是如此。(iii)收缩(vc)可在时间2O(d)·nk−d+O(1)内求解。这改进了Lima等人的算法。[JCSS 2021],并表明当k=d时,收缩(vc)是由d(或k)参数化的FPT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducing the vertex cover number via edge contractions

Given a graph G on n vertices and two integers k and d, the Contraction(vc) problem asks whether one can contract at most k edges to reduce the vertex cover number of G by at least d. Recently, Lima et al. [JCSS 2021] proved that Contraction(vc) admits an XP algorithm running in time f(d)nO(d). They asked whether this problem is FPT under this parameterization. In this article, we prove that: (i) Contraction(vc) is W[1]-hard parameterized by k+d. Moreover, unless the ETH fails, the problem does not admit an algorithm running in time f(k+d)no(k+d) for any function f. This answers negatively the open question stated in Lima et al. [JCSS 2021]. (ii) Contraction(vc) is NP-hard even when k=d. (iii) Contraction(vc) can be solved in time 2O(d)nkd+O(1). This improves the algorithm of Lima et al. [JCSS 2021], and shows that when k=d, Contraction(vc) is FPT parameterized by d (or by k).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信