Carl Einarson , Gregory Gutin , Bart M.P. Jansen , Diptapriyo Majumdar , Magnus Wahlström
{"title":"p边/顶点连接的顶点覆盖:参数化和近似算法","authors":"Carl Einarson , Gregory Gutin , Bart M.P. Jansen , Diptapriyo Majumdar , Magnus Wahlström","doi":"10.1016/j.jcss.2022.11.002","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce and study two natural generalizations of the Connected Vertex Cover (VC) problem: the <em>p</em>-Edge-Connected and <em>p</em>-Vertex-Connected VC problem (where <span><math><mi>p</mi><mo>≥</mo><mn>2</mn></math></span> is a fixed integer). We obtain an <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>p</mi><mi>k</mi><mo>)</mo></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>-time algorithm for <em>p</em>-Edge-Connected VC and an <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>-time algorithm for <em>p</em>-Vertex-Connected VC. Thus, like Connected VC, both constrained VC problems are FPT. Furthermore, like Connected VC, neither problem admits a polynomial kernel unless NP ⊆ coNP/poly, which is highly unlikely. We prove however that both problems admit time efficient polynomial sized approximate kernelization schemes. Finally, we describe a <span><math><mn>2</mn><mo>(</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-approximation algorithm for the <em>p</em>-Edge-Connected VC. The proofs for the new VC problems require more sophisticated arguments than for Connected VC. In particular, for the approximation algorithm we use Gomory-Hu trees and for the approximate kernels a result on small-size spanning <em>p</em>-vertex/edge-connected subgraphs of a <em>p</em>-vertex/edge-connected graph by Nishizeki and Poljak (1994) <span>[30]</span> and Nagamochi and Ibaraki (1992) <span>[27]</span>.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"133 ","pages":"Pages 23-40"},"PeriodicalIF":1.1000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"p-Edge/vertex-connected vertex cover: Parameterized and approximation algorithms\",\"authors\":\"Carl Einarson , Gregory Gutin , Bart M.P. Jansen , Diptapriyo Majumdar , Magnus Wahlström\",\"doi\":\"10.1016/j.jcss.2022.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce and study two natural generalizations of the Connected Vertex Cover (VC) problem: the <em>p</em>-Edge-Connected and <em>p</em>-Vertex-Connected VC problem (where <span><math><mi>p</mi><mo>≥</mo><mn>2</mn></math></span> is a fixed integer). We obtain an <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>p</mi><mi>k</mi><mo>)</mo></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>-time algorithm for <em>p</em>-Edge-Connected VC and an <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>-time algorithm for <em>p</em>-Vertex-Connected VC. Thus, like Connected VC, both constrained VC problems are FPT. Furthermore, like Connected VC, neither problem admits a polynomial kernel unless NP ⊆ coNP/poly, which is highly unlikely. We prove however that both problems admit time efficient polynomial sized approximate kernelization schemes. Finally, we describe a <span><math><mn>2</mn><mo>(</mo><mi>p</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-approximation algorithm for the <em>p</em>-Edge-Connected VC. The proofs for the new VC problems require more sophisticated arguments than for Connected VC. In particular, for the approximation algorithm we use Gomory-Hu trees and for the approximate kernels a result on small-size spanning <em>p</em>-vertex/edge-connected subgraphs of a <em>p</em>-vertex/edge-connected graph by Nishizeki and Poljak (1994) <span>[30]</span> and Nagamochi and Ibaraki (1992) <span>[27]</span>.</p></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"133 \",\"pages\":\"Pages 23-40\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000022000824\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000022000824","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
p-Edge/vertex-connected vertex cover: Parameterized and approximation algorithms
We introduce and study two natural generalizations of the Connected Vertex Cover (VC) problem: the p-Edge-Connected and p-Vertex-Connected VC problem (where is a fixed integer). We obtain an -time algorithm for p-Edge-Connected VC and an -time algorithm for p-Vertex-Connected VC. Thus, like Connected VC, both constrained VC problems are FPT. Furthermore, like Connected VC, neither problem admits a polynomial kernel unless NP ⊆ coNP/poly, which is highly unlikely. We prove however that both problems admit time efficient polynomial sized approximate kernelization schemes. Finally, we describe a -approximation algorithm for the p-Edge-Connected VC. The proofs for the new VC problems require more sophisticated arguments than for Connected VC. In particular, for the approximation algorithm we use Gomory-Hu trees and for the approximate kernels a result on small-size spanning p-vertex/edge-connected subgraphs of a p-vertex/edge-connected graph by Nishizeki and Poljak (1994) [30] and Nagamochi and Ibaraki (1992) [27].
期刊介绍:
The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions.
Research areas include traditional subjects such as:
• Theory of algorithms and computability
• Formal languages
• Automata theory
Contemporary subjects such as:
• Complexity theory
• Algorithmic Complexity
• Parallel & distributed computing
• Computer networks
• Neural networks
• Computational learning theory
• Database theory & practice
• Computer modeling of complex systems
• Security and Privacy.