马尔可夫链和无二义自动机

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Christel Baier , Stefan Kiefer , Joachim Klein , David Müller , James Worrell
{"title":"马尔可夫链和无二义自动机","authors":"Christel Baier ,&nbsp;Stefan Kiefer ,&nbsp;Joachim Klein ,&nbsp;David Müller ,&nbsp;James Worrell","doi":"10.1016/j.jcss.2023.03.005","DOIUrl":null,"url":null,"abstract":"<div><p>Unambiguous automata are nondeterministic automata in which every word has at most one accepting run. In this paper we give a polynomial-time algorithm for model checking discrete-time Markov chains against <em>ω</em>-regular specifications represented as unambiguous automata. We furthermore show that the complexity of this model checking problem lies in NC: the subclass of P comprising those problems solvable in poly-logarithmic parallel time. These complexity bounds match the known bounds for model checking Markov chains against specifications given as deterministic automata, notwithstanding the fact that unambiguous automata can be exponentially more succinct than deterministic automata. We report on an implementation of our procedure, including an experiment in which the implementation is used to model check LTL formulas on Markov chains.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"136 ","pages":"Pages 113-134"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Markov chains and unambiguous automata\",\"authors\":\"Christel Baier ,&nbsp;Stefan Kiefer ,&nbsp;Joachim Klein ,&nbsp;David Müller ,&nbsp;James Worrell\",\"doi\":\"10.1016/j.jcss.2023.03.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Unambiguous automata are nondeterministic automata in which every word has at most one accepting run. In this paper we give a polynomial-time algorithm for model checking discrete-time Markov chains against <em>ω</em>-regular specifications represented as unambiguous automata. We furthermore show that the complexity of this model checking problem lies in NC: the subclass of P comprising those problems solvable in poly-logarithmic parallel time. These complexity bounds match the known bounds for model checking Markov chains against specifications given as deterministic automata, notwithstanding the fact that unambiguous automata can be exponentially more succinct than deterministic automata. We report on an implementation of our procedure, including an experiment in which the implementation is used to model check LTL formulas on Markov chains.</p></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"136 \",\"pages\":\"Pages 113-134\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000023000442\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000023000442","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 2

摘要

无歧义自动机是一种不确定性自动机,其中每个单词最多有一个可接受的游程。在本文中,我们给出了一个多项式时间算法,用于针对以模糊自动机表示的ω-正则规范对离散时间马尔可夫链进行模型检查。我们进一步证明了这个模型检验问题的复杂性在于NC:P的子类包括那些在多对数并行时间内可解的问题。这些复杂度边界与根据确定性自动机给出的规范对马尔可夫链进行模型检查的已知边界相匹配,尽管无模糊自动机可以比确定性自动机更简洁。我们报告了我们的过程的实现,包括一个实验,其中该实现用于对马尔可夫链上的LTL公式进行建模检查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Markov chains and unambiguous automata

Unambiguous automata are nondeterministic automata in which every word has at most one accepting run. In this paper we give a polynomial-time algorithm for model checking discrete-time Markov chains against ω-regular specifications represented as unambiguous automata. We furthermore show that the complexity of this model checking problem lies in NC: the subclass of P comprising those problems solvable in poly-logarithmic parallel time. These complexity bounds match the known bounds for model checking Markov chains against specifications given as deterministic automata, notwithstanding the fact that unambiguous automata can be exponentially more succinct than deterministic automata. We report on an implementation of our procedure, including an experiment in which the implementation is used to model check LTL formulas on Markov chains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信