{"title":"具有大小约束的分类聚类的参数化复杂度","authors":"Fedor V. Fomin, Petr A. Golovach, Nidhi Purohit","doi":"10.1016/j.jcss.2023.03.006","DOIUrl":null,"url":null,"abstract":"<div><p>In the <span>Categorical Clustering</span> problem, we are given a set of vectors (matrix) <span><math><mi>A</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> over <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span>, where Σ is a finite alphabet, and integers <em>k</em> and <em>B</em>. The task is to partition <strong>A</strong> into <em>k</em> clusters such that the median objective of the clustering in the Hamming norm is at most <em>B</em>. Fomin, Golovach, and Panolan [ICALP 2018] proved that the problem is fixed-parameter tractable for the binary case <span><math><mi>Σ</mi><mo>=</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>. We extend this algorithmic result to a popular capacitated clustering model, where in addition the sizes of the clusters are lower and upper bounded by integer parameters <em>p</em> and <em>q</em>, respectively. Our main theorem is that the problem is solvable in time <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>B</mi><mi>log</mi><mo></mo><mi>B</mi><mo>)</mo></mrow></msup><mo>|</mo><mi>Σ</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>B</mi></mrow></msup><mo>⋅</mo><msup><mrow><mo>(</mo><mi>m</mi><mi>n</mi><mo>)</mo></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"136 ","pages":"Pages 171-194"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameterized complexity of categorical clustering with size constraints\",\"authors\":\"Fedor V. Fomin, Petr A. Golovach, Nidhi Purohit\",\"doi\":\"10.1016/j.jcss.2023.03.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the <span>Categorical Clustering</span> problem, we are given a set of vectors (matrix) <span><math><mi>A</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> over <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span>, where Σ is a finite alphabet, and integers <em>k</em> and <em>B</em>. The task is to partition <strong>A</strong> into <em>k</em> clusters such that the median objective of the clustering in the Hamming norm is at most <em>B</em>. Fomin, Golovach, and Panolan [ICALP 2018] proved that the problem is fixed-parameter tractable for the binary case <span><math><mi>Σ</mi><mo>=</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span>. We extend this algorithmic result to a popular capacitated clustering model, where in addition the sizes of the clusters are lower and upper bounded by integer parameters <em>p</em> and <em>q</em>, respectively. Our main theorem is that the problem is solvable in time <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>B</mi><mi>log</mi><mo></mo><mi>B</mi><mo>)</mo></mrow></msup><mo>|</mo><mi>Σ</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>B</mi></mrow></msup><mo>⋅</mo><msup><mrow><mo>(</mo><mi>m</mi><mi>n</mi><mo>)</mo></mrow><mrow><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup></math></span>.</p></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"136 \",\"pages\":\"Pages 171-194\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000023000430\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000023000430","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Parameterized complexity of categorical clustering with size constraints
In the Categorical Clustering problem, we are given a set of vectors (matrix) over , where Σ is a finite alphabet, and integers k and B. The task is to partition A into k clusters such that the median objective of the clustering in the Hamming norm is at most B. Fomin, Golovach, and Panolan [ICALP 2018] proved that the problem is fixed-parameter tractable for the binary case . We extend this algorithmic result to a popular capacitated clustering model, where in addition the sizes of the clusters are lower and upper bounded by integer parameters p and q, respectively. Our main theorem is that the problem is solvable in time .
期刊介绍:
The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions.
Research areas include traditional subjects such as:
• Theory of algorithms and computability
• Formal languages
• Automata theory
Contemporary subjects such as:
• Complexity theory
• Algorithmic Complexity
• Parallel & distributed computing
• Computer networks
• Neural networks
• Computational learning theory
• Database theory & practice
• Computer modeling of complex systems
• Security and Privacy.