均匀再结晶组织和双峰组织对Mg-5Zn-0.6Zr合金力学性能的影响

Hang Zhang , Xiang Xiao , Rongguang Li , Di Wu , Ruizhi Wu , Boshu Liu , Shanshan Li , Jingren Li
{"title":"均匀再结晶组织和双峰组织对Mg-5Zn-0.6Zr合金力学性能的影响","authors":"Hang Zhang ,&nbsp;Xiang Xiao ,&nbsp;Rongguang Li ,&nbsp;Di Wu ,&nbsp;Ruizhi Wu ,&nbsp;Boshu Liu ,&nbsp;Shanshan Li ,&nbsp;Jingren Li","doi":"10.1016/j.recm.2023.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>For typical Mg-Zn-Zr alloys, exhilaratingly high strength of a yield strength (YS) higher than 300 MPa can hardly be attained by traditional rolling. In this paper, we compare the mechanical properties and strengthening mechanisms of the Mg-5Zn-0.6Zr alloys having a homogeneous dynamical recrystallized microstructure and a bimodal microstructure with high-density nano substructures. The Mg-5Zn-0.6Zr alloy with the bimodal microstructure (rolled at 150 °C with a thickness reduction of 60%) exhibits a YS of 332 MPa, an ultimate tensile strength (UTS) of 360 MPa, and an elongation of 5%. The high strength is attributed to the microstructure with high-density nano substructures, high-density nano (Mg, Zr)Zn<sub>2</sub> precipitates, ultrafine recrystallized grains, and strong basal texture. In comparison, the Mg-5Zn-0.6Zr alloy with homogeneous microstructure (rolled at 200 °C with a thickness reduction of 70%) exhibits a YS of 209 MPa, an UTS of 317 MPa, and an elongation of 17%, which contains coarser recrystallized grains, coarser precipitates, weaker texture, and lower density of dislocations, further resulting in low strength. The difference between the strengthening mechanism in two kinds of microstructure is discussed in detail. The results facilitate the preparation of wrought Magnesium alloy with high strength by reasonable microstructure construction.</p></div>","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"2 3","pages":"Pages 208-214"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of a homogeneous recrystallized microstructure and a bimodal microstructure on mechanical properties in Mg-5Zn-0.6Zr alloys\",\"authors\":\"Hang Zhang ,&nbsp;Xiang Xiao ,&nbsp;Rongguang Li ,&nbsp;Di Wu ,&nbsp;Ruizhi Wu ,&nbsp;Boshu Liu ,&nbsp;Shanshan Li ,&nbsp;Jingren Li\",\"doi\":\"10.1016/j.recm.2023.04.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For typical Mg-Zn-Zr alloys, exhilaratingly high strength of a yield strength (YS) higher than 300 MPa can hardly be attained by traditional rolling. In this paper, we compare the mechanical properties and strengthening mechanisms of the Mg-5Zn-0.6Zr alloys having a homogeneous dynamical recrystallized microstructure and a bimodal microstructure with high-density nano substructures. The Mg-5Zn-0.6Zr alloy with the bimodal microstructure (rolled at 150 °C with a thickness reduction of 60%) exhibits a YS of 332 MPa, an ultimate tensile strength (UTS) of 360 MPa, and an elongation of 5%. The high strength is attributed to the microstructure with high-density nano substructures, high-density nano (Mg, Zr)Zn<sub>2</sub> precipitates, ultrafine recrystallized grains, and strong basal texture. In comparison, the Mg-5Zn-0.6Zr alloy with homogeneous microstructure (rolled at 200 °C with a thickness reduction of 70%) exhibits a YS of 209 MPa, an UTS of 317 MPa, and an elongation of 17%, which contains coarser recrystallized grains, coarser precipitates, weaker texture, and lower density of dislocations, further resulting in low strength. The difference between the strengthening mechanism in two kinds of microstructure is discussed in detail. The results facilitate the preparation of wrought Magnesium alloy with high strength by reasonable microstructure construction.</p></div>\",\"PeriodicalId\":101081,\"journal\":{\"name\":\"Resources Chemicals and Materials\",\"volume\":\"2 3\",\"pages\":\"Pages 208-214\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Chemicals and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277244332300017X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Chemicals and Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277244332300017X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于典型的Mg-Zn-Zr合金,通过传统轧制很难获得高于300MPa的令人振奋的高强度屈服强度(YS)。在本文中,我们比较了具有均匀动态再结晶微观结构和具有高密度纳米亚结构的双峰微观结构的Mg-5Zn-0.6Zr合金的力学性能和强化机制。具有双峰微观结构的Mg-5Zn-0.6Zr合金(在150°C下轧制,厚度减少60%)表现出332 MPa的YS、360 MPa的极限拉伸强度(UTS)和5%的伸长率。高强度归因于具有高密度纳米亚结构、高密度纳米(Mg,Zr)Zn2沉淀物、超细再结晶晶粒和强基底织构的微观结构。相比之下,具有均匀微观结构的Mg-5Zn-0.6Zr合金(在200°C下轧制,厚度减少70%)表现出209MPa的YS、317MPa的UTS和17%的伸长率,其中包含较粗的再结晶晶粒、较粗的沉淀物、较弱的织构和较低的位错密度,进一步导致低强度。详细讨论了两种显微组织中强化机理的区别。研究结果有利于通过合理的组织结构制备高强度变形镁合金。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of a homogeneous recrystallized microstructure and a bimodal microstructure on mechanical properties in Mg-5Zn-0.6Zr alloys

Effect of a homogeneous recrystallized microstructure and a bimodal microstructure on mechanical properties in Mg-5Zn-0.6Zr alloys

For typical Mg-Zn-Zr alloys, exhilaratingly high strength of a yield strength (YS) higher than 300 MPa can hardly be attained by traditional rolling. In this paper, we compare the mechanical properties and strengthening mechanisms of the Mg-5Zn-0.6Zr alloys having a homogeneous dynamical recrystallized microstructure and a bimodal microstructure with high-density nano substructures. The Mg-5Zn-0.6Zr alloy with the bimodal microstructure (rolled at 150 °C with a thickness reduction of 60%) exhibits a YS of 332 MPa, an ultimate tensile strength (UTS) of 360 MPa, and an elongation of 5%. The high strength is attributed to the microstructure with high-density nano substructures, high-density nano (Mg, Zr)Zn2 precipitates, ultrafine recrystallized grains, and strong basal texture. In comparison, the Mg-5Zn-0.6Zr alloy with homogeneous microstructure (rolled at 200 °C with a thickness reduction of 70%) exhibits a YS of 209 MPa, an UTS of 317 MPa, and an elongation of 17%, which contains coarser recrystallized grains, coarser precipitates, weaker texture, and lower density of dislocations, further resulting in low strength. The difference between the strengthening mechanism in two kinds of microstructure is discussed in detail. The results facilitate the preparation of wrought Magnesium alloy with high strength by reasonable microstructure construction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信