使用随机森林算法预测学生课程成绩:预测因子的重要性分析

IF 3.4 Q2 NEUROSCIENCES
Mirna Nachouki, Elfadil A. Mohamed, Riyadh Mehdi, Mahmoud Abou Naaj
{"title":"使用随机森林算法预测学生课程成绩:预测因子的重要性分析","authors":"Mirna Nachouki,&nbsp;Elfadil A. Mohamed,&nbsp;Riyadh Mehdi,&nbsp;Mahmoud Abou Naaj","doi":"10.1016/j.tine.2023.100214","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Universities need to find strategies for improving student retention rates. Predicting student academic performance enables institutions to identify underachievers and take appropriate actions to increase student completion and lower dropout rates.</p></div><div><h3>Method</h3><p>In this work, we proposed a model based on random forest methodology to predict students' course performance using seven input predictors and find their relative importance in determining the course grade. Seven predictors were derived from transcripts and recorded data from 650 undergraduate computing students.</p></div><div><h3>Results</h3><p>Our findings indicate that grade point average and high school score were the two most significant predictors of a course grade. The course category and class attendance percentage have equal importance. Course delivery mode does not have a significant effect.</p></div><div><h3>Conclusion</h3><p>Our findings show that courses students at risk find challenging can be identified, and appropriate actions, procedures, and policies can be taken.</p></div>","PeriodicalId":46228,"journal":{"name":"Trends in Neuroscience and Education","volume":"33 ","pages":"Article 100214"},"PeriodicalIF":3.4000,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Student course grade prediction using the random forest algorithm: Analysis of predictors' importance\",\"authors\":\"Mirna Nachouki,&nbsp;Elfadil A. Mohamed,&nbsp;Riyadh Mehdi,&nbsp;Mahmoud Abou Naaj\",\"doi\":\"10.1016/j.tine.2023.100214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Universities need to find strategies for improving student retention rates. Predicting student academic performance enables institutions to identify underachievers and take appropriate actions to increase student completion and lower dropout rates.</p></div><div><h3>Method</h3><p>In this work, we proposed a model based on random forest methodology to predict students' course performance using seven input predictors and find their relative importance in determining the course grade. Seven predictors were derived from transcripts and recorded data from 650 undergraduate computing students.</p></div><div><h3>Results</h3><p>Our findings indicate that grade point average and high school score were the two most significant predictors of a course grade. The course category and class attendance percentage have equal importance. Course delivery mode does not have a significant effect.</p></div><div><h3>Conclusion</h3><p>Our findings show that courses students at risk find challenging can be identified, and appropriate actions, procedures, and policies can be taken.</p></div>\",\"PeriodicalId\":46228,\"journal\":{\"name\":\"Trends in Neuroscience and Education\",\"volume\":\"33 \",\"pages\":\"Article 100214\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Neuroscience and Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211949323000170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Neuroscience and Education","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211949323000170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景大学需要找到提高学生保留率的策略。预测学生的学习成绩使各机构能够识别成绩不佳的学生,并采取适当行动提高学生完成学业和降低辍学率。方法在这项工作中,我们提出了一个基于随机森林方法的模型,使用七个输入预测因子来预测学生的课程成绩,并发现它们在确定课程成绩中的相对重要性。七个预测因子来自650名计算机专业本科生的成绩单和记录数据。结果我们的研究结果表明,平均绩点和高中成绩是课程成绩的两个最重要的预测因素。课程类别和上课率具有同等的重要性。课程交付模式没有显著影响。结论我们的研究结果表明,有风险的学生可以确定具有挑战性的课程,并采取适当的行动、程序和政策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Student course grade prediction using the random forest algorithm: Analysis of predictors' importance

Background

Universities need to find strategies for improving student retention rates. Predicting student academic performance enables institutions to identify underachievers and take appropriate actions to increase student completion and lower dropout rates.

Method

In this work, we proposed a model based on random forest methodology to predict students' course performance using seven input predictors and find their relative importance in determining the course grade. Seven predictors were derived from transcripts and recorded data from 650 undergraduate computing students.

Results

Our findings indicate that grade point average and high school score were the two most significant predictors of a course grade. The course category and class attendance percentage have equal importance. Course delivery mode does not have a significant effect.

Conclusion

Our findings show that courses students at risk find challenging can be identified, and appropriate actions, procedures, and policies can be taken.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
6.10%
发文量
22
审稿时长
65 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信