用武器代替香水:嗜金蝇蝽的化学联想策略

IF 1.6 3区 环境科学与生态学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Adrian Brückner
{"title":"用武器代替香水:嗜金蝇蝽的化学联想策略","authors":"Adrian Brückner","doi":"10.1007/s00049-022-00374-8","DOIUrl":null,"url":null,"abstract":"<div><p>A vast diversity of parasites associates with ants. Living in and around ant nests of these organisms must overcome ant colony defenses. As ant defensive behavior is mainly mediated by species-specific cuticular hydrocarbons (CHCs) or alarm pheromones, and ant-associated parasites can either crack their hosts’ chemical communication code by modifying their own CHC profiles or use pro-active strategies like chemical weaponry for distraction and repellency. While the chemical nature of ant–parasite interactions has been intensively studied for highly host-specific parasites, the chemical-deceptive strategies of the rather rare ant-resembling heteropterans are unknown. To gain insight into this system, I studied the bug <i>Scolopostethus pacificus</i> (Barber 1918) which can be found near the nests of the ecologically dominant and aggressive velvety tree ant (<i>Liometopum occidentale</i>, Emery 1895). Using behavioral, chemical, and molecular approaches, I disentangled the relationship of <i>S. pacificus</i> and its host ant. Chemical profiling of the bug and the ant revealed that the bug does not make use of CHC insignificance or mimicry, but instead uses a cocktail of volatile compounds released from its metathoracic glands that likely moderates encounters with its aggressive host. Feeding trials with armed and artificially disarmed bugs revealed a defensive function of the gland exudates. Targeted molecular gut barcoding showed that <i>S. pacificus</i> does not feed on <i>L. occidentale</i>. These results suggest that chemical weaponry, rather than a chemical code-cracking CHC matching or chemical insignificance, enables <i>S. pacificus</i> to get along with and live in close proximity to its host ant.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"32 4-5","pages":"147 - 157"},"PeriodicalIF":1.6000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00049-022-00374-8.pdf","citationCount":"2","resultStr":"{\"title\":\"Using weapons instead of perfume: chemical association strategies of the myrmecophilous bug Scolopostethus pacificus (Rhyparochromidae)\",\"authors\":\"Adrian Brückner\",\"doi\":\"10.1007/s00049-022-00374-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A vast diversity of parasites associates with ants. Living in and around ant nests of these organisms must overcome ant colony defenses. As ant defensive behavior is mainly mediated by species-specific cuticular hydrocarbons (CHCs) or alarm pheromones, and ant-associated parasites can either crack their hosts’ chemical communication code by modifying their own CHC profiles or use pro-active strategies like chemical weaponry for distraction and repellency. While the chemical nature of ant–parasite interactions has been intensively studied for highly host-specific parasites, the chemical-deceptive strategies of the rather rare ant-resembling heteropterans are unknown. To gain insight into this system, I studied the bug <i>Scolopostethus pacificus</i> (Barber 1918) which can be found near the nests of the ecologically dominant and aggressive velvety tree ant (<i>Liometopum occidentale</i>, Emery 1895). Using behavioral, chemical, and molecular approaches, I disentangled the relationship of <i>S. pacificus</i> and its host ant. Chemical profiling of the bug and the ant revealed that the bug does not make use of CHC insignificance or mimicry, but instead uses a cocktail of volatile compounds released from its metathoracic glands that likely moderates encounters with its aggressive host. Feeding trials with armed and artificially disarmed bugs revealed a defensive function of the gland exudates. Targeted molecular gut barcoding showed that <i>S. pacificus</i> does not feed on <i>L. occidentale</i>. These results suggest that chemical weaponry, rather than a chemical code-cracking CHC matching or chemical insignificance, enables <i>S. pacificus</i> to get along with and live in close proximity to its host ant.</p></div>\",\"PeriodicalId\":515,\"journal\":{\"name\":\"Chemoecology\",\"volume\":\"32 4-5\",\"pages\":\"147 - 157\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00049-022-00374-8.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemoecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00049-022-00374-8\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemoecology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00049-022-00374-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

与蚂蚁有关的寄生虫种类繁多。生活在蚁巢内和周围的这些生物必须克服蚁群的防御。蚂蚁的防御行为主要是由物种特异性角质层碳氢化合物(CHCs)或报警信息素介导的,与蚂蚁相关的寄生虫可以通过修改自身的CHC谱来破解宿主的化学通讯密码,也可以使用化学武器等主动策略来分散注意力和驱避。虽然抗寄生虫相互作用的化学性质已经深入研究了高度宿主特异性寄生虫,但相当罕见的类似于抗的异翅目动物的化学欺骗策略尚不清楚。为了深入了解这一系统,我研究了在生态优势和侵略性的天鹅绒树蚁(Liometopum occidentale, Emery 1895)的巢穴附近可以找到的臭虫太平洋角蚁(Scolopostethus pacificus, Barber 1918)。利用行为学、化学和分子方法,我解开了太平洋S. pacificus和它的宿主蚂蚁的关系。对臭虫和蚂蚁的化学分析表明,臭虫不利用CHC的无足轻重或模仿,而是利用从其胸腺释放的挥发性化合物的混合物,这可能会缓和与具有攻击性的宿主的相遇。用武装和人工解除武装的昆虫进行喂养试验,揭示了腺体分泌物的防御功能。靶向分子肠道条形码显示太平洋葡萄球菌不以西方葡萄球菌为食。这些结果表明,化学武器,而不是化学密码破解CHC匹配或化学无关性,使太平洋S. pacificus与宿主蚂蚁相处和生活在一起。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Using weapons instead of perfume: chemical association strategies of the myrmecophilous bug Scolopostethus pacificus (Rhyparochromidae)

Using weapons instead of perfume: chemical association strategies of the myrmecophilous bug Scolopostethus pacificus (Rhyparochromidae)

A vast diversity of parasites associates with ants. Living in and around ant nests of these organisms must overcome ant colony defenses. As ant defensive behavior is mainly mediated by species-specific cuticular hydrocarbons (CHCs) or alarm pheromones, and ant-associated parasites can either crack their hosts’ chemical communication code by modifying their own CHC profiles or use pro-active strategies like chemical weaponry for distraction and repellency. While the chemical nature of ant–parasite interactions has been intensively studied for highly host-specific parasites, the chemical-deceptive strategies of the rather rare ant-resembling heteropterans are unknown. To gain insight into this system, I studied the bug Scolopostethus pacificus (Barber 1918) which can be found near the nests of the ecologically dominant and aggressive velvety tree ant (Liometopum occidentale, Emery 1895). Using behavioral, chemical, and molecular approaches, I disentangled the relationship of S. pacificus and its host ant. Chemical profiling of the bug and the ant revealed that the bug does not make use of CHC insignificance or mimicry, but instead uses a cocktail of volatile compounds released from its metathoracic glands that likely moderates encounters with its aggressive host. Feeding trials with armed and artificially disarmed bugs revealed a defensive function of the gland exudates. Targeted molecular gut barcoding showed that S. pacificus does not feed on L. occidentale. These results suggest that chemical weaponry, rather than a chemical code-cracking CHC matching or chemical insignificance, enables S. pacificus to get along with and live in close proximity to its host ant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemoecology
Chemoecology 环境科学-生化与分子生物学
CiteScore
4.20
自引率
0.00%
发文量
11
审稿时长
>36 weeks
期刊介绍: It is the aim of Chemoecology to promote and stimulate basic science in the field of chemical ecology by publishing research papers that integrate evolution and/or ecology and chemistry in an attempt to increase our understanding of the biological significance of natural products. Its scopes cover the evolutionary biology, mechanisms and chemistry of biotic interactions and the evolution and synthesis of the underlying natural products. Manuscripts on the evolution and ecology of trophic relationships, intra- and interspecific communication, competition, and other kinds of chemical communication in all types of organismic interactions will be considered suitable for publication. Ecological studies of trophic interactions will be considered also if they are based on the information of the transmission of natural products (e.g. fatty acids) through the food-chain. Chemoecology further publishes papers that relate to the evolution and ecology of interactions mediated by non-volatile compounds (e.g. adhesive secretions). Mechanistic approaches may include the identification, biosynthesis and metabolism of substances that carry information and the elucidation of receptor- and transduction systems using physiological, biochemical and molecular techniques. Papers describing the structure and functional morphology of organs involved in chemical communication will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信