异孔膜在基因组药物制造中的机会

IF 4.9 Q1 ENGINEERING, CHEMICAL
Ke Meng , Thomas F. Johnson , Alberto Alvarez-Fernandez , Stefan Guldin , Daniel G. Bracewell
{"title":"异孔膜在基因组药物制造中的机会","authors":"Ke Meng ,&nbsp;Thomas F. Johnson ,&nbsp;Alberto Alvarez-Fernandez ,&nbsp;Stefan Guldin ,&nbsp;Daniel G. Bracewell","doi":"10.1016/j.memlet.2023.100052","DOIUrl":null,"url":null,"abstract":"<div><p>Viral and non-viral vectors have revolutionised in the last 5 years the approaches to tackling pandemics, cancers and genetic diseases. The intrinsic properties of these vectors present new separation challenges to their manufacture in terms of both the process-related impurities to be removed and the complex labile nature of the target products. These characteristics make them susceptible to heterogeneity and the formation of product-related impurities.</p><p>Conventional polyethersulfone membrane filters used for sterile filtration and ultrafiltration of viral vectors and lipid nanoparticles can display limited selectivity and cause product losses. To address these challenges, novel membrane materials and fabrication techniques to overcome the boundary of selectivity-permeability performance have become of interest. Isoporous membranes with well-defined pore size and pore dispersity at the nano-scale show promising separation performance but have only been demonstrated at small scales to date.</p><p>This review summarises the decision process for the development of new membrane candidates for vector manufacturing in genomic medicine, including membranes fabricated by lithography, track-etched membranes, anodic aluminium oxide (AAO) membranes and self-assembled block copolymer membranes. By comparing these membranes to existing commercially available products, the possible advantages presented by novel materials and fabrication approaches are identified.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":"3 2","pages":"Article 100052"},"PeriodicalIF":4.9000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Opportunities for isoporous membranes in the manufacture of genomic medicines\",\"authors\":\"Ke Meng ,&nbsp;Thomas F. Johnson ,&nbsp;Alberto Alvarez-Fernandez ,&nbsp;Stefan Guldin ,&nbsp;Daniel G. Bracewell\",\"doi\":\"10.1016/j.memlet.2023.100052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Viral and non-viral vectors have revolutionised in the last 5 years the approaches to tackling pandemics, cancers and genetic diseases. The intrinsic properties of these vectors present new separation challenges to their manufacture in terms of both the process-related impurities to be removed and the complex labile nature of the target products. These characteristics make them susceptible to heterogeneity and the formation of product-related impurities.</p><p>Conventional polyethersulfone membrane filters used for sterile filtration and ultrafiltration of viral vectors and lipid nanoparticles can display limited selectivity and cause product losses. To address these challenges, novel membrane materials and fabrication techniques to overcome the boundary of selectivity-permeability performance have become of interest. Isoporous membranes with well-defined pore size and pore dispersity at the nano-scale show promising separation performance but have only been demonstrated at small scales to date.</p><p>This review summarises the decision process for the development of new membrane candidates for vector manufacturing in genomic medicine, including membranes fabricated by lithography, track-etched membranes, anodic aluminium oxide (AAO) membranes and self-assembled block copolymer membranes. By comparing these membranes to existing commercially available products, the possible advantages presented by novel materials and fabrication approaches are identified.</p></div>\",\"PeriodicalId\":100805,\"journal\":{\"name\":\"Journal of Membrane Science Letters\",\"volume\":\"3 2\",\"pages\":\"Article 100052\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2023-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772421223000168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772421223000168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

在过去的5年里,病毒和非病毒载体彻底改变了应对流行病、癌症和遗传疾病的方法。这些载体的固有性质对其制造提出了新的分离挑战,既有要去除的工艺相关杂质,也有目标产物的复杂不稳定性质。这些特性使它们容易受到异质性和产品相关杂质形成的影响。用于病毒载体和脂质纳米颗粒的无菌过滤和超滤的常规聚醚砜膜过滤器可能显示出有限的选择性并导致产品损失。为了应对这些挑战,克服选择性-渗透性能边界的新型膜材料和制造技术已经引起了人们的兴趣。具有明确孔径和纳米级孔分散性的等孔膜显示出有希望的分离性能,但迄今为止仅在小规模上得到证明。这篇综述总结了开发用于基因组医学载体制造的新型候选膜的决策过程,包括通过光刻制造的膜、轨道蚀刻膜、阳极氧化铝(AAO)膜和自组装嵌段共聚物膜。通过将这些膜与现有的商业产品进行比较,确定了新型材料和制造方法可能带来的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Opportunities for isoporous membranes in the manufacture of genomic medicines

Viral and non-viral vectors have revolutionised in the last 5 years the approaches to tackling pandemics, cancers and genetic diseases. The intrinsic properties of these vectors present new separation challenges to their manufacture in terms of both the process-related impurities to be removed and the complex labile nature of the target products. These characteristics make them susceptible to heterogeneity and the formation of product-related impurities.

Conventional polyethersulfone membrane filters used for sterile filtration and ultrafiltration of viral vectors and lipid nanoparticles can display limited selectivity and cause product losses. To address these challenges, novel membrane materials and fabrication techniques to overcome the boundary of selectivity-permeability performance have become of interest. Isoporous membranes with well-defined pore size and pore dispersity at the nano-scale show promising separation performance but have only been demonstrated at small scales to date.

This review summarises the decision process for the development of new membrane candidates for vector manufacturing in genomic medicine, including membranes fabricated by lithography, track-etched membranes, anodic aluminium oxide (AAO) membranes and self-assembled block copolymer membranes. By comparing these membranes to existing commercially available products, the possible advantages presented by novel materials and fabrication approaches are identified.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信