由碳聚合物点原位制备高分散纳米TiC增强铜基复合材料

Xiao Huang , Longke Bao , Rui Bao , Liang Liu , Jingmei Tao , Jinsong Wang , Zhengfu Zhang , Zhenhua Ge , Songlin Tan , Jianhong Yi , Fanran Meng
{"title":"由碳聚合物点原位制备高分散纳米TiC增强铜基复合材料","authors":"Xiao Huang ,&nbsp;Longke Bao ,&nbsp;Rui Bao ,&nbsp;Liang Liu ,&nbsp;Jingmei Tao ,&nbsp;Jinsong Wang ,&nbsp;Zhengfu Zhang ,&nbsp;Zhenhua Ge ,&nbsp;Songlin Tan ,&nbsp;Jianhong Yi ,&nbsp;Fanran Meng","doi":"10.1016/j.apmate.2022.100090","DOIUrl":null,"url":null,"abstract":"<div><p>In order to uniformly disperse the ceramic reinforcements synthesized <em>in-situ</em> in the copper matrix composites, this study used Carbon Polymer Dot (CPD) as the carbon source and Cu–1.0%Ti alloy powder as the matrix for supplying Ti source to prepare <em>in-situ</em> synthesized TiC/Cu composites. The results show that TiC nano-precipitates, having the similar particle sizes with the CPD, form at the grains interior and grain boundaries, and maintain a uniform distribution state. Compared with the matrix, 0.3 ​wt% CPD/Cu composite displays the best strength-plastic compatibility, the ultimate tensile strength achieves 385 ​MPa accompanied with a corresponding elongation of 21%, owing to the dislocation hindrance caused by nano-carbide and excellent interface bonding between nano TiC and the Cu matrix. The density function theory calculation supports our experimental results by showing a tighter and stronger interface contact. This work presents a new approach for studying <em>in-situ</em> carbide precipitates.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Reinforced copper matrix composites with highly dispersed nano size TiC in-situ generated from the Carbon Polymer Dots\",\"authors\":\"Xiao Huang ,&nbsp;Longke Bao ,&nbsp;Rui Bao ,&nbsp;Liang Liu ,&nbsp;Jingmei Tao ,&nbsp;Jinsong Wang ,&nbsp;Zhengfu Zhang ,&nbsp;Zhenhua Ge ,&nbsp;Songlin Tan ,&nbsp;Jianhong Yi ,&nbsp;Fanran Meng\",\"doi\":\"10.1016/j.apmate.2022.100090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to uniformly disperse the ceramic reinforcements synthesized <em>in-situ</em> in the copper matrix composites, this study used Carbon Polymer Dot (CPD) as the carbon source and Cu–1.0%Ti alloy powder as the matrix for supplying Ti source to prepare <em>in-situ</em> synthesized TiC/Cu composites. The results show that TiC nano-precipitates, having the similar particle sizes with the CPD, form at the grains interior and grain boundaries, and maintain a uniform distribution state. Compared with the matrix, 0.3 ​wt% CPD/Cu composite displays the best strength-plastic compatibility, the ultimate tensile strength achieves 385 ​MPa accompanied with a corresponding elongation of 21%, owing to the dislocation hindrance caused by nano-carbide and excellent interface bonding between nano TiC and the Cu matrix. The density function theory calculation supports our experimental results by showing a tighter and stronger interface contact. This work presents a new approach for studying <em>in-situ</em> carbide precipitates.</p></div>\",\"PeriodicalId\":7283,\"journal\":{\"name\":\"Advanced Powder Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772834X22000732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X22000732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

为了使原位合成的陶瓷增强体均匀分散在铜基复合材料中,本研究以碳聚合物点(CPD)为碳源,Cu–1.0%Ti合金粉末为基体提供Ti源,制备了原位合成的TiC/Cu复合材料。结果表明,在晶粒内部和晶界处形成了与CPD具有相似粒度的TiC纳米沉淀物,并保持了均匀的分布状态。与矩阵相比,0.3​wt%CPD/Cu复合材料显示出最佳的强度塑性相容性,极限抗拉强度达到385​由于纳米碳化物引起的位错阻碍以及纳米TiC与Cu基体之间良好的界面结合,MPa的压力下,相应的伸长率为21%。密度函数理论计算通过显示更紧密和更强的界面接触来支持我们的实验结果。这项工作为原位研究碳化物沉淀物提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforced copper matrix composites with highly dispersed nano size TiC in-situ generated from the Carbon Polymer Dots

In order to uniformly disperse the ceramic reinforcements synthesized in-situ in the copper matrix composites, this study used Carbon Polymer Dot (CPD) as the carbon source and Cu–1.0%Ti alloy powder as the matrix for supplying Ti source to prepare in-situ synthesized TiC/Cu composites. The results show that TiC nano-precipitates, having the similar particle sizes with the CPD, form at the grains interior and grain boundaries, and maintain a uniform distribution state. Compared with the matrix, 0.3 ​wt% CPD/Cu composite displays the best strength-plastic compatibility, the ultimate tensile strength achieves 385 ​MPa accompanied with a corresponding elongation of 21%, owing to the dislocation hindrance caused by nano-carbide and excellent interface bonding between nano TiC and the Cu matrix. The density function theory calculation supports our experimental results by showing a tighter and stronger interface contact. This work presents a new approach for studying in-situ carbide precipitates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信