元素偏析抑制铝合金中的氢脆

Jun Hui , Biao Wang , Jiapeng Chen , Xiaoyong Zhang
{"title":"元素偏析抑制铝合金中的氢脆","authors":"Jun Hui ,&nbsp;Biao Wang ,&nbsp;Jiapeng Chen ,&nbsp;Xiaoyong Zhang","doi":"10.1016/j.apmate.2022.100099","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we performed first-principles calculations to determine the effects of four metallic solutes (Y, Zr, Mg, and Zn) on the hydrogen embrittlement (HE) of aluminum alloys with the Σ5(210) grain boundary (GB). The segregation energy, associated segregation concentration, and binding energy of these solutes were examined to identify their states. Moreover, the ability of the aforementioned solutes to inhibit or promote HE in the aforementioned alloys through GB energy, free surface energy, and adhesion was investigated. The Griffith and Rice–Wang–Scheiber models were used to determine the effect of nonequilibrium concentration on adhesion. Tensile tests were performed using the uniaxial strain loading method to determine the ultimate tensile strength and GB elongation of the considered alloys. The mechanism of HE inhibition by the four solutes was investigated by examining the charge density, Bader charge, and crystal orbital Hamiltonian population of the alloys. Finally, the calculation results of this study were validated through experiments.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Elemental segregation inhibits hydrogen embrittlement in aluminium alloys\",\"authors\":\"Jun Hui ,&nbsp;Biao Wang ,&nbsp;Jiapeng Chen ,&nbsp;Xiaoyong Zhang\",\"doi\":\"10.1016/j.apmate.2022.100099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we performed first-principles calculations to determine the effects of four metallic solutes (Y, Zr, Mg, and Zn) on the hydrogen embrittlement (HE) of aluminum alloys with the Σ5(210) grain boundary (GB). The segregation energy, associated segregation concentration, and binding energy of these solutes were examined to identify their states. Moreover, the ability of the aforementioned solutes to inhibit or promote HE in the aforementioned alloys through GB energy, free surface energy, and adhesion was investigated. The Griffith and Rice–Wang–Scheiber models were used to determine the effect of nonequilibrium concentration on adhesion. Tensile tests were performed using the uniaxial strain loading method to determine the ultimate tensile strength and GB elongation of the considered alloys. The mechanism of HE inhibition by the four solutes was investigated by examining the charge density, Bader charge, and crystal orbital Hamiltonian population of the alloys. Finally, the calculation results of this study were validated through experiments.</p></div>\",\"PeriodicalId\":7283,\"journal\":{\"name\":\"Advanced Powder Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772834X22000823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X22000823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本研究中,我们进行了第一性原理计算,以确定四种金属溶质(Y、Zr、Mg和Zn)对具有∑5(210)晶界(GB)的铝合金的氢脆(HE)的影响。检测了这些溶质的偏析能、相关偏析浓度和结合能,以确定它们的状态。此外,研究了上述溶质通过GB能、自由表面能和粘附力抑制或促进上述合金中HE的能力。Griffith和Rice–Wang–Scheiber模型用于确定非平衡浓度对粘附的影响。使用单轴应变加载法进行拉伸试验,以确定所考虑合金的极限拉伸强度和GB伸长率。通过检测合金的电荷密度、Bader电荷和晶体轨道哈密顿布居,研究了四种溶质对HE的抑制机制。最后,通过实验验证了本研究的计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Elemental segregation inhibits hydrogen embrittlement in aluminium alloys

Elemental segregation inhibits hydrogen embrittlement in aluminium alloys

In this study, we performed first-principles calculations to determine the effects of four metallic solutes (Y, Zr, Mg, and Zn) on the hydrogen embrittlement (HE) of aluminum alloys with the Σ5(210) grain boundary (GB). The segregation energy, associated segregation concentration, and binding energy of these solutes were examined to identify their states. Moreover, the ability of the aforementioned solutes to inhibit or promote HE in the aforementioned alloys through GB energy, free surface energy, and adhesion was investigated. The Griffith and Rice–Wang–Scheiber models were used to determine the effect of nonequilibrium concentration on adhesion. Tensile tests were performed using the uniaxial strain loading method to determine the ultimate tensile strength and GB elongation of the considered alloys. The mechanism of HE inhibition by the four solutes was investigated by examining the charge density, Bader charge, and crystal orbital Hamiltonian population of the alloys. Finally, the calculation results of this study were validated through experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信