{"title":"面向层面情感分析的并行融合图卷积网络","authors":"Yuxin Wu, Guofeng Deng","doi":"10.1016/j.bdr.2023.100378","DOIUrl":null,"url":null,"abstract":"<div><p>Sentiment analysis<span> has always been an important basic task in the NLP<span> field. Recently, graph convolutional networks (GCNs) have been widely used in aspect-level sentiment analysis. Because GCNs have good aggregation effects, every node can contain neighboring node information. However, in previous studies, most models used only a single GCN to learn contextual information. The GCN relies on the construction method of the graph, and a single GCN will cause the model to focus on a certain relationship of nodes that depends on the construction method and ignore other information. In addition, when the GCN aggregates node information, it cannot determine whether the aggregated information is useful, so it will inevitably introduce noise. We propose a model that fuses two parallel GCNs to learn different relational features between sentences at the same time, and we add a gate mechanism to the GCN to filter the noise introduced by the GCN when aggregating information. Finally, we validate our model on public datasets, and the experiments show that compared to state-of-the-art models, our model performs better.</span></span></p></div>","PeriodicalId":56017,"journal":{"name":"Big Data Research","volume":"32 ","pages":"Article 100378"},"PeriodicalIF":3.5000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Parallel Fusion Graph Convolutional Network for Aspect-Level Sentiment Analysis\",\"authors\":\"Yuxin Wu, Guofeng Deng\",\"doi\":\"10.1016/j.bdr.2023.100378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sentiment analysis<span> has always been an important basic task in the NLP<span> field. Recently, graph convolutional networks (GCNs) have been widely used in aspect-level sentiment analysis. Because GCNs have good aggregation effects, every node can contain neighboring node information. However, in previous studies, most models used only a single GCN to learn contextual information. The GCN relies on the construction method of the graph, and a single GCN will cause the model to focus on a certain relationship of nodes that depends on the construction method and ignore other information. In addition, when the GCN aggregates node information, it cannot determine whether the aggregated information is useful, so it will inevitably introduce noise. We propose a model that fuses two parallel GCNs to learn different relational features between sentences at the same time, and we add a gate mechanism to the GCN to filter the noise introduced by the GCN when aggregating information. Finally, we validate our model on public datasets, and the experiments show that compared to state-of-the-art models, our model performs better.</span></span></p></div>\",\"PeriodicalId\":56017,\"journal\":{\"name\":\"Big Data Research\",\"volume\":\"32 \",\"pages\":\"Article 100378\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214579623000114\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Research","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579623000114","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A Parallel Fusion Graph Convolutional Network for Aspect-Level Sentiment Analysis
Sentiment analysis has always been an important basic task in the NLP field. Recently, graph convolutional networks (GCNs) have been widely used in aspect-level sentiment analysis. Because GCNs have good aggregation effects, every node can contain neighboring node information. However, in previous studies, most models used only a single GCN to learn contextual information. The GCN relies on the construction method of the graph, and a single GCN will cause the model to focus on a certain relationship of nodes that depends on the construction method and ignore other information. In addition, when the GCN aggregates node information, it cannot determine whether the aggregated information is useful, so it will inevitably introduce noise. We propose a model that fuses two parallel GCNs to learn different relational features between sentences at the same time, and we add a gate mechanism to the GCN to filter the noise introduced by the GCN when aggregating information. Finally, we validate our model on public datasets, and the experiments show that compared to state-of-the-art models, our model performs better.
期刊介绍:
The journal aims to promote and communicate advances in big data research by providing a fast and high quality forum for researchers, practitioners and policy makers from the very many different communities working on, and with, this topic.
The journal will accept papers on foundational aspects in dealing with big data, as well as papers on specific Platforms and Technologies used to deal with big data. To promote Data Science and interdisciplinary collaboration between fields, and to showcase the benefits of data driven research, papers demonstrating applications of big data in domains as diverse as Geoscience, Social Web, Finance, e-Commerce, Health Care, Environment and Climate, Physics and Astronomy, Chemistry, life sciences and drug discovery, digital libraries and scientific publications, security and government will also be considered. Occasionally the journal may publish whitepapers on policies, standards and best practices.