Qiming Liu , Samuel McNair , Forrest Nichols , Bingzhang Lu , Bingzhe Yu , Dingjie Pan , Jamie Ko , Amrinder Bhuller , Frank Bridges , Shaowei Chen
{"title":"磁感应加热析氧反应超快合成钴/碳纳米复合材料","authors":"Qiming Liu , Samuel McNair , Forrest Nichols , Bingzhang Lu , Bingzhe Yu , Dingjie Pan , Jamie Ko , Amrinder Bhuller , Frank Bridges , Shaowei Chen","doi":"10.1016/j.asems.2023.100046","DOIUrl":null,"url":null,"abstract":"<div><p>Metal/carbon nanocomposites have shown great potential as high-performance, low-cost electrocatalysts owing largely to their unique metal-support interactions. These nanocomposites are typically prepared by conventional pyrolysis that is tedious and energy-intensive. Herein, we report the ultrafast preparation of cobalt/carbon nanocomposites by magnetic induction heating (MIH) of metal organic frameworks within seconds under an inert atmosphere. The resulting samples consist of cobalt nanoparticles encapsulated within defective carbon shells, and effectively catalyze oxygen evolution reaction (OER) in alkaline media. Among the series, the sample prepared at 400 A for 10 s exhibits the best OER performance, needing a low overpotential of +308 mV to reach the current density of 10 mA cm<sup>−2</sup>, along with excellent stability, and even outperforms commercial RuO<sub>2</sub> at high overpotentials. This is ascribed to the charge transfer between the carbon scaffold and metal nanoparticles. Operando X-ray absorption spectroscopy measurements show that the electrochemically produced CoOOH species is responsible for the high electrocatalytic performance. The results highlight the unique potential of MIH in the development of effective nanocomposite catalysts for electrochemical energy technologies.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"2 1","pages":"Article 100046"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ultrafast synthesis of cobalt/carbon nanocomposites by magnetic induction heating for oxygen evolution reaction\",\"authors\":\"Qiming Liu , Samuel McNair , Forrest Nichols , Bingzhang Lu , Bingzhe Yu , Dingjie Pan , Jamie Ko , Amrinder Bhuller , Frank Bridges , Shaowei Chen\",\"doi\":\"10.1016/j.asems.2023.100046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metal/carbon nanocomposites have shown great potential as high-performance, low-cost electrocatalysts owing largely to their unique metal-support interactions. These nanocomposites are typically prepared by conventional pyrolysis that is tedious and energy-intensive. Herein, we report the ultrafast preparation of cobalt/carbon nanocomposites by magnetic induction heating (MIH) of metal organic frameworks within seconds under an inert atmosphere. The resulting samples consist of cobalt nanoparticles encapsulated within defective carbon shells, and effectively catalyze oxygen evolution reaction (OER) in alkaline media. Among the series, the sample prepared at 400 A for 10 s exhibits the best OER performance, needing a low overpotential of +308 mV to reach the current density of 10 mA cm<sup>−2</sup>, along with excellent stability, and even outperforms commercial RuO<sub>2</sub> at high overpotentials. This is ascribed to the charge transfer between the carbon scaffold and metal nanoparticles. Operando X-ray absorption spectroscopy measurements show that the electrochemically produced CoOOH species is responsible for the high electrocatalytic performance. The results highlight the unique potential of MIH in the development of effective nanocomposite catalysts for electrochemical energy technologies.</p></div>\",\"PeriodicalId\":100036,\"journal\":{\"name\":\"Advanced Sensor and Energy Materials\",\"volume\":\"2 1\",\"pages\":\"Article 100046\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sensor and Energy Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773045X23000018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor and Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773045X23000018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
金属/碳纳米复合材料在很大程度上由于其独特的金属-载体相互作用而显示出作为高性能、低成本电催化剂的巨大潜力。这些纳米复合材料通常是通过传统的热解制备的,这是乏味的且耗能高的。在此,我们报道了在惰性气氛下,通过金属有机框架的磁感应加热(MIH)在几秒钟内超快制备钴/碳纳米复合材料。所得样品由包裹在有缺陷的碳壳中的钴纳米颗粒组成,并在碱性介质中有效催化析氧反应(OER)。在该系列中,在400 A下制备10 s的样品表现出最佳的OER性能,需要+308 mV的低过电位才能达到10 mA cm−2的电流密度,同时具有优异的稳定性,甚至在高过电位下优于商用RuO2。这归因于碳支架和金属纳米颗粒之间的电荷转移。操作X射线吸收光谱测量表明,电化学产生的CoOOH物种是高电催化性能的原因。研究结果突出了MIH在开发用于电化学能源技术的有效纳米复合催化剂方面的独特潜力。
Ultrafast synthesis of cobalt/carbon nanocomposites by magnetic induction heating for oxygen evolution reaction
Metal/carbon nanocomposites have shown great potential as high-performance, low-cost electrocatalysts owing largely to their unique metal-support interactions. These nanocomposites are typically prepared by conventional pyrolysis that is tedious and energy-intensive. Herein, we report the ultrafast preparation of cobalt/carbon nanocomposites by magnetic induction heating (MIH) of metal organic frameworks within seconds under an inert atmosphere. The resulting samples consist of cobalt nanoparticles encapsulated within defective carbon shells, and effectively catalyze oxygen evolution reaction (OER) in alkaline media. Among the series, the sample prepared at 400 A for 10 s exhibits the best OER performance, needing a low overpotential of +308 mV to reach the current density of 10 mA cm−2, along with excellent stability, and even outperforms commercial RuO2 at high overpotentials. This is ascribed to the charge transfer between the carbon scaffold and metal nanoparticles. Operando X-ray absorption spectroscopy measurements show that the electrochemically produced CoOOH species is responsible for the high electrocatalytic performance. The results highlight the unique potential of MIH in the development of effective nanocomposite catalysts for electrochemical energy technologies.