建设更安全的城市枢纽:来自网络电信诈骗和预警设计比较研究的见解

Chunjin Zhu , Chenlu Zhang , Renke Wang , Jingwen Tian , Ruoxuan Hu , Jingtong Zhao , Yaxin Ke , Ning Liu
{"title":"建设更安全的城市枢纽:来自网络电信诈骗和预警设计比较研究的见解","authors":"Chunjin Zhu ,&nbsp;Chenlu Zhang ,&nbsp;Renke Wang ,&nbsp;Jingwen Tian ,&nbsp;Ruoxuan Hu ,&nbsp;Jingtong Zhao ,&nbsp;Yaxin Ke ,&nbsp;Ning Liu","doi":"10.1016/j.ugj.2023.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>As digital technologies and smart city development continue to grow, the threats of cybercrime and scams have become increasingly salient for city managers, businesses, and citizens worldwide. With a less effective data privacy protection, the number of new types of scams that precisely target victims is increasing. We collected 6,871 crawl fraud cases from news reports and local websites between October 2018 and December 2021 in Mainland China and Hong Kong. We generated 2,747 messages from news and open-source message datasets on GitHub. Based on these novel datasets, we conducted a comparative analysis of cyber telecom scams between Mainland China and Hong Kong and identified victim profiles using adata technology and target group index analysis. Furthermore, we developed a message-classifier scam alert model using data mining and machine learning algorithms. Our study provides valuable insights and essential implications on how data analytics can support future antifraud initiatives and help cities build safer urban hubs.</p></div>","PeriodicalId":101266,"journal":{"name":"Urban Governance","volume":"3 3","pages":"Pages 200-210"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building of safer urban hubs: Insights from a comparative study on cyber telecom scams and early warning design\",\"authors\":\"Chunjin Zhu ,&nbsp;Chenlu Zhang ,&nbsp;Renke Wang ,&nbsp;Jingwen Tian ,&nbsp;Ruoxuan Hu ,&nbsp;Jingtong Zhao ,&nbsp;Yaxin Ke ,&nbsp;Ning Liu\",\"doi\":\"10.1016/j.ugj.2023.05.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As digital technologies and smart city development continue to grow, the threats of cybercrime and scams have become increasingly salient for city managers, businesses, and citizens worldwide. With a less effective data privacy protection, the number of new types of scams that precisely target victims is increasing. We collected 6,871 crawl fraud cases from news reports and local websites between October 2018 and December 2021 in Mainland China and Hong Kong. We generated 2,747 messages from news and open-source message datasets on GitHub. Based on these novel datasets, we conducted a comparative analysis of cyber telecom scams between Mainland China and Hong Kong and identified victim profiles using adata technology and target group index analysis. Furthermore, we developed a message-classifier scam alert model using data mining and machine learning algorithms. Our study provides valuable insights and essential implications on how data analytics can support future antifraud initiatives and help cities build safer urban hubs.</p></div>\",\"PeriodicalId\":101266,\"journal\":{\"name\":\"Urban Governance\",\"volume\":\"3 3\",\"pages\":\"Pages 200-210\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Governance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2664328623000542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Governance","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2664328623000542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着数字技术和智能城市发展的不断增长,网络犯罪和诈骗的威胁对世界各地的城市管理者、企业和公民来说越来越突出。由于数据隐私保护效果较差,专门针对受害者的新型骗局数量正在增加。2018年10月至2021年12月,我们从中国大陆和香港的新闻报道和当地网站收集了6871起爬行欺诈案件。我们在GitHub上从新闻和开源消息数据集中生成了2747条消息。基于这些新颖的数据集,我们对中国大陆和香港的网络电信诈骗进行了比较分析,并使用adata技术和目标群体指数分析确定了受害者档案。此外,我们使用数据挖掘和机器学习算法开发了一个消息分类器欺诈警报模型。我们的研究为数据分析如何支持未来的反欺诈举措和帮助城市建设更安全的城市中心提供了宝贵的见解和重要启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Building of safer urban hubs: Insights from a comparative study on cyber telecom scams and early warning design

As digital technologies and smart city development continue to grow, the threats of cybercrime and scams have become increasingly salient for city managers, businesses, and citizens worldwide. With a less effective data privacy protection, the number of new types of scams that precisely target victims is increasing. We collected 6,871 crawl fraud cases from news reports and local websites between October 2018 and December 2021 in Mainland China and Hong Kong. We generated 2,747 messages from news and open-source message datasets on GitHub. Based on these novel datasets, we conducted a comparative analysis of cyber telecom scams between Mainland China and Hong Kong and identified victim profiles using adata technology and target group index analysis. Furthermore, we developed a message-classifier scam alert model using data mining and machine learning algorithms. Our study provides valuable insights and essential implications on how data analytics can support future antifraud initiatives and help cities build safer urban hubs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信