棕榈仁油生物柴油计算机辅助放大生产技术经济参数的人工神经模糊智能预测

Olajide Olukayode Ajala , Emmanuel Olusola Oke , Oludare Johnson Odejobi , Babatunde Kazeem Adeoye , Joel Olatunbosun Oyelade
{"title":"棕榈仁油生物柴油计算机辅助放大生产技术经济参数的人工神经模糊智能预测","authors":"Olajide Olukayode Ajala ,&nbsp;Emmanuel Olusola Oke ,&nbsp;Oludare Johnson Odejobi ,&nbsp;Babatunde Kazeem Adeoye ,&nbsp;Joel Olatunbosun Oyelade","doi":"10.1016/j.clce.2023.100098","DOIUrl":null,"url":null,"abstract":"<div><p>Palm kernel oil (PKO) is one of the promising starting materials for biodiesel production. Economic viability of large-scale biodiesel production from PKO happens to be the major challenge, as investors would like to know the overall cost-benefit value before making decisions. Therefore, this study develops artificial intelligence (AI) techno-economic models for predicting overall cost-benefit value which will provide fundamental investment decisions for potential investors. The two AI techniques used in this study were artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS). The input-output data for modelling was gotten from a previous work which based solely on experimental design for PKO for biodiesel production. The input variables are Methanol:oil ratio, temperature, catalyst quantity, residence time and catalyst calcination temperature, while return on investment (ROI), payback time (PBT), net present value (NPV) and production capacity (PC) are the responses. ANN and Fuzzy Logic Toolboxes in MATLAB R2013a were used for model implementation. The developed models were appraised using statistical indices such as coefficient of determination (R<sup>2</sup>) and root mean square error (RMSE). The results showed that, trimf based ANFIS models (ROI- R<sup>2</sup>: 0.9999; RMSE: 7.39 × 10<sup>−7</sup>; PBT- R<sup>2</sup>: 0.9999; RMSE: 5.32 × 10<sup>−7</sup>; NPV- R<sup>2</sup>: 0.9999; RMSE: 5.89 × 10<sup>−7</sup>; PC- R<sup>2</sup>: 0.9999; RMSE: 5.89 × 10<sup>−7</sup>) performed marginally better than ANN models (ROI- R<sup>2</sup>: 0.9496; RMSE: 0.0599; PBT- R<sup>2</sup>: 0.9945; RMSE: 0.0373; NPV- R<sup>2</sup>: 0.9957; RMSE: 0.0384; PC- R<sup>2</sup>: 0.9959; RMSE: 0.0376). Also, the relative significance of input parameters based on sensitivity analysis showed catalyst calcination temperature (C<sub>T</sub>) as the most significant input parameter. These findings show that both the ANFIS and ANN models are effective in predicting techno-economic parameters.</p></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"5 ","pages":"Article 100098"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Artificial neuro-fuzzy intelligent prediction of techno-economic parameters of computer-aided scale-up for palm kernel oil based biodiesel production\",\"authors\":\"Olajide Olukayode Ajala ,&nbsp;Emmanuel Olusola Oke ,&nbsp;Oludare Johnson Odejobi ,&nbsp;Babatunde Kazeem Adeoye ,&nbsp;Joel Olatunbosun Oyelade\",\"doi\":\"10.1016/j.clce.2023.100098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Palm kernel oil (PKO) is one of the promising starting materials for biodiesel production. Economic viability of large-scale biodiesel production from PKO happens to be the major challenge, as investors would like to know the overall cost-benefit value before making decisions. Therefore, this study develops artificial intelligence (AI) techno-economic models for predicting overall cost-benefit value which will provide fundamental investment decisions for potential investors. The two AI techniques used in this study were artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS). The input-output data for modelling was gotten from a previous work which based solely on experimental design for PKO for biodiesel production. The input variables are Methanol:oil ratio, temperature, catalyst quantity, residence time and catalyst calcination temperature, while return on investment (ROI), payback time (PBT), net present value (NPV) and production capacity (PC) are the responses. ANN and Fuzzy Logic Toolboxes in MATLAB R2013a were used for model implementation. The developed models were appraised using statistical indices such as coefficient of determination (R<sup>2</sup>) and root mean square error (RMSE). The results showed that, trimf based ANFIS models (ROI- R<sup>2</sup>: 0.9999; RMSE: 7.39 × 10<sup>−7</sup>; PBT- R<sup>2</sup>: 0.9999; RMSE: 5.32 × 10<sup>−7</sup>; NPV- R<sup>2</sup>: 0.9999; RMSE: 5.89 × 10<sup>−7</sup>; PC- R<sup>2</sup>: 0.9999; RMSE: 5.89 × 10<sup>−7</sup>) performed marginally better than ANN models (ROI- R<sup>2</sup>: 0.9496; RMSE: 0.0599; PBT- R<sup>2</sup>: 0.9945; RMSE: 0.0373; NPV- R<sup>2</sup>: 0.9957; RMSE: 0.0384; PC- R<sup>2</sup>: 0.9959; RMSE: 0.0376). Also, the relative significance of input parameters based on sensitivity analysis showed catalyst calcination temperature (C<sub>T</sub>) as the most significant input parameter. These findings show that both the ANFIS and ANN models are effective in predicting techno-economic parameters.</p></div>\",\"PeriodicalId\":100251,\"journal\":{\"name\":\"Cleaner Chemical Engineering\",\"volume\":\"5 \",\"pages\":\"Article 100098\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772782323000062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772782323000062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

棕榈仁油(PKO)是一种很有前途的生物柴油生产原料。PKO大规模生产生物柴油的经济可行性恰好是主要挑战,因为投资者在做出决策之前希望了解总体成本效益值。因此,本研究开发了用于预测总体成本效益值的人工智能(AI)技术经济模型,为潜在投资者提供基本的投资决策。本研究中使用的两种人工智能技术是人工神经网络(ANN)和自适应神经模糊推理系统(ANFIS)。建模的投入产出数据来自以前的工作,该工作仅基于用于生物柴油生产的PKO的实验设计。输入变量为甲醇:油比、温度、催化剂用量、停留时间和催化剂煅烧温度,而投资回报率(ROI)、投资回收期(PBT)、净现值(NPV)和生产能力(PC)是响应。模型实现采用了MATLAB R2013a中的人工神经网络和模糊逻辑工具箱。使用决定系数(R2)和均方根误差(RMSE)等统计指标对所开发的模型进行了评估。结果表明,基于trimf的ANFIS模型(ROI-R2:0.999;RMSE:7.39×10−7;PBT-R2:0.9999;RMSE:5.32×10−7%;NPV-R2:0.0999;RMSE:5.89×10‑7;PC-R2:0.9999;RMSE:5.89×,基于灵敏度分析的输入参数的相对显著性显示催化剂煅烧温度(CT)是最显著的输入参数。这些发现表明,ANFIS和ANN模型在预测技术经济参数方面都是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial neuro-fuzzy intelligent prediction of techno-economic parameters of computer-aided scale-up for palm kernel oil based biodiesel production

Palm kernel oil (PKO) is one of the promising starting materials for biodiesel production. Economic viability of large-scale biodiesel production from PKO happens to be the major challenge, as investors would like to know the overall cost-benefit value before making decisions. Therefore, this study develops artificial intelligence (AI) techno-economic models for predicting overall cost-benefit value which will provide fundamental investment decisions for potential investors. The two AI techniques used in this study were artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS). The input-output data for modelling was gotten from a previous work which based solely on experimental design for PKO for biodiesel production. The input variables are Methanol:oil ratio, temperature, catalyst quantity, residence time and catalyst calcination temperature, while return on investment (ROI), payback time (PBT), net present value (NPV) and production capacity (PC) are the responses. ANN and Fuzzy Logic Toolboxes in MATLAB R2013a were used for model implementation. The developed models were appraised using statistical indices such as coefficient of determination (R2) and root mean square error (RMSE). The results showed that, trimf based ANFIS models (ROI- R2: 0.9999; RMSE: 7.39 × 10−7; PBT- R2: 0.9999; RMSE: 5.32 × 10−7; NPV- R2: 0.9999; RMSE: 5.89 × 10−7; PC- R2: 0.9999; RMSE: 5.89 × 10−7) performed marginally better than ANN models (ROI- R2: 0.9496; RMSE: 0.0599; PBT- R2: 0.9945; RMSE: 0.0373; NPV- R2: 0.9957; RMSE: 0.0384; PC- R2: 0.9959; RMSE: 0.0376). Also, the relative significance of input parameters based on sensitivity analysis showed catalyst calcination temperature (CT) as the most significant input parameter. These findings show that both the ANFIS and ANN models are effective in predicting techno-economic parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信