激光粉末床熔合制备Al2O3泡沫的微观组织演变及力学性能

Ye Dong , Annan Chen , Ting Yang , Shuai Gao , Shuning Liu , Bingjian Guo , Hongyi Jiang , Yusheng Shi , Chunze Yan
{"title":"激光粉末床熔合制备Al2O3泡沫的微观组织演变及力学性能","authors":"Ye Dong ,&nbsp;Annan Chen ,&nbsp;Ting Yang ,&nbsp;Shuai Gao ,&nbsp;Shuning Liu ,&nbsp;Bingjian Guo ,&nbsp;Hongyi Jiang ,&nbsp;Yusheng Shi ,&nbsp;Chunze Yan","doi":"10.1016/j.apmate.2023.100135","DOIUrl":null,"url":null,"abstract":"<div><p>Laser powder bed fusion (LPBF) combined with reaction bonding (RB) of Al particles is an effective method for preparing high-performance 3D Al<sub>2</sub>O<sub>3</sub> ceramic foams. However, the indistinct microstructure evolution hinders the regulation of pore features and the improvement of synthetic properties. Herein, the microstructure evolution of the Al<sub>2</sub>O<sub>3</sub> ceramic foams during the LPBF/RB process is clarified by various characterization methods, and the corresponding mechanical property modulation is realized by optimizing LPBF parameters, organic binder (E12 epoxy resin) content, heating rate, sintering time, and coral-like Al<sub>2</sub>O<sub>3</sub> content. The expansion from Al<sub>2</sub>O<sub>3</sub> outward growth and Al granule precipitation counteracts the shrinkage from E12 decomposition and Al<sub>2</sub>O<sub>3</sub> sintering, resulting in an ultra-low shrinkage of 0.94%–3.01%. The pore structures of particle packing pores, hollow spheres, and microporous structures allow a tunable porosity of 52.6%–73.7%. The <em>in-situ</em> formation of multi-scale features including hollow spheres, flaky grains, whiskers, nanofibers, and bond bridges brings about a remarkably high bending strength of 6.5–38.3 ​MPa. Our findings reveal the relationship between microstructure evolution and property optimization of high-performance ceramic foams, with potential significance for microstructure design and practical application.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure evolution and mechanical properties of Al2O3 foams via laser powder bed fusion from Al particles\",\"authors\":\"Ye Dong ,&nbsp;Annan Chen ,&nbsp;Ting Yang ,&nbsp;Shuai Gao ,&nbsp;Shuning Liu ,&nbsp;Bingjian Guo ,&nbsp;Hongyi Jiang ,&nbsp;Yusheng Shi ,&nbsp;Chunze Yan\",\"doi\":\"10.1016/j.apmate.2023.100135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Laser powder bed fusion (LPBF) combined with reaction bonding (RB) of Al particles is an effective method for preparing high-performance 3D Al<sub>2</sub>O<sub>3</sub> ceramic foams. However, the indistinct microstructure evolution hinders the regulation of pore features and the improvement of synthetic properties. Herein, the microstructure evolution of the Al<sub>2</sub>O<sub>3</sub> ceramic foams during the LPBF/RB process is clarified by various characterization methods, and the corresponding mechanical property modulation is realized by optimizing LPBF parameters, organic binder (E12 epoxy resin) content, heating rate, sintering time, and coral-like Al<sub>2</sub>O<sub>3</sub> content. The expansion from Al<sub>2</sub>O<sub>3</sub> outward growth and Al granule precipitation counteracts the shrinkage from E12 decomposition and Al<sub>2</sub>O<sub>3</sub> sintering, resulting in an ultra-low shrinkage of 0.94%–3.01%. The pore structures of particle packing pores, hollow spheres, and microporous structures allow a tunable porosity of 52.6%–73.7%. The <em>in-situ</em> formation of multi-scale features including hollow spheres, flaky grains, whiskers, nanofibers, and bond bridges brings about a remarkably high bending strength of 6.5–38.3 ​MPa. Our findings reveal the relationship between microstructure evolution and property optimization of high-performance ceramic foams, with potential significance for microstructure design and practical application.</p></div>\",\"PeriodicalId\":7283,\"journal\":{\"name\":\"Advanced Powder Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772834X23000271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X23000271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

激光粉末床融合(LPBF)结合Al颗粒的反应结合(RB)是制备高性能3D Al2O3陶瓷泡沫的有效方法。然而,微观结构的模糊演化阻碍了孔隙特征的调节和合成性能的提高。本文通过各种表征方法阐明了Al2O3陶瓷泡沫在LPBF/RB过程中的微观结构演变,并通过优化LPBF参数、有机粘结剂(E12环氧树脂)含量、加热速率、烧结时间和珊瑚状Al2O3含量来实现相应的机械性能调变。Al2O3向外生长和Al颗粒沉淀产生的膨胀抵消了E12分解和Al2O3烧结产生的收缩,导致0.94%–3.01%的超低收缩。颗粒填充孔、空心球和微孔结构的孔结构允许52.6%–73.7%的可调孔隙率。包括空心球在内的多尺度特征的原位形成,片状晶粒、晶须、纳米纤维和键桥带来了6.5–38.3的极高弯曲强度​MPa。我们的研究结果揭示了高性能泡沫陶瓷的微观结构演变与性能优化之间的关系,对微观结构设计和实际应用具有潜在意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microstructure evolution and mechanical properties of Al2O3 foams via laser powder bed fusion from Al particles

Laser powder bed fusion (LPBF) combined with reaction bonding (RB) of Al particles is an effective method for preparing high-performance 3D Al2O3 ceramic foams. However, the indistinct microstructure evolution hinders the regulation of pore features and the improvement of synthetic properties. Herein, the microstructure evolution of the Al2O3 ceramic foams during the LPBF/RB process is clarified by various characterization methods, and the corresponding mechanical property modulation is realized by optimizing LPBF parameters, organic binder (E12 epoxy resin) content, heating rate, sintering time, and coral-like Al2O3 content. The expansion from Al2O3 outward growth and Al granule precipitation counteracts the shrinkage from E12 decomposition and Al2O3 sintering, resulting in an ultra-low shrinkage of 0.94%–3.01%. The pore structures of particle packing pores, hollow spheres, and microporous structures allow a tunable porosity of 52.6%–73.7%. The in-situ formation of multi-scale features including hollow spheres, flaky grains, whiskers, nanofibers, and bond bridges brings about a remarkably high bending strength of 6.5–38.3 ​MPa. Our findings reveal the relationship between microstructure evolution and property optimization of high-performance ceramic foams, with potential significance for microstructure design and practical application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信