用于中国风云四号卫星上先进地球同步辐射成像仪的云光学和微物理特性产品:第一版

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Chao Liu , Yuxing Song , Ganning Zhou , Shiwen Teng , Bo Li , Na Xu , Feng Lu , Peng Zhang
{"title":"用于中国风云四号卫星上先进地球同步辐射成像仪的云光学和微物理特性产品:第一版","authors":"Chao Liu ,&nbsp;Yuxing Song ,&nbsp;Ganning Zhou ,&nbsp;Shiwen Teng ,&nbsp;Bo Li ,&nbsp;Na Xu ,&nbsp;Feng Lu ,&nbsp;Peng Zhang","doi":"10.1016/j.aosl.2023.100337","DOIUrl":null,"url":null,"abstract":"<div><p>Fengyun-4 (FY-4), the latest collection of Chinese geostationary meteorological satellites, monitors the Eastern Hemisphere with high spatiotemporal resolutions. This study developed a cloud optical and microphysical property product for the Advanced Geosynchronous Radiation Imager (AGRI) onboard the FY-4 satellites. The product focuses on cloud optical thickness (COT) and cloud effective radius (CER) using a bi-spectral retrieval algorithm, and also includes cloud mask and phase using machine learning (ML) algorithms as prerequisites for COT and CER retrievals. The ML-based algorithm develops four independent models using Random Forest methods for cloud mask, liquid water, ice, and mixed-phase/multi-layer clouds, respectively. A two-habit ice and sphere water cloud model are employed to give their optical properties. Look-up tables of cloud reflectance in the COT and CER sensitive channels are built for efficient forward simulations, and the retrieval is performed by an optimal estimation algorithm. Compared with collocated active observations, the cloud mask and phase results give true positive rates of ∼95% and ∼85% and are more sensitive to mixed-phase clouds. Meanwhile, the AGRI-based COT and CER agree closely with those given by the collocated MODIS and AHI cloud products, and the correlation coefficients between MODIS and the AGRI results are 0.76 and 0.63 for COT and CER, respectively. The COT and CER retrievals will be persistently maintained and improved as the operational product for FY-4/AGRI.</p><p>摘要</p><p>风云四号作为中国新一代静止气象卫星, 提供了高时空分辨率的监测产品. 本文介绍风云四号搭载的先进地球同步轨道辐射成像仪AGRI的云光学和微物理特性产品. 该产品包含了基于双光谱通道反演的云光学厚度和云粒子有效半径产品, 以及基于机器学习的云识别和云相态产品. 与时空匹配的主动卫星观测结果对比显示, 该产品的云识别和云相态的准确率分别在95%和85%; 该产品提供的云光学厚度和云有效粒径与经典的MODIS产品的相关系数达到0.76和0.63. 团队将持续优化和更新该云光学和微物理特性定量产品, 服务风云四号卫星定量应用.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":"16 3","pages":"Article 100337"},"PeriodicalIF":2.3000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A cloud optical and microphysical property product for the advanced geosynchronous radiation imager onboard China's Fengyun-4 satellites: The first version\",\"authors\":\"Chao Liu ,&nbsp;Yuxing Song ,&nbsp;Ganning Zhou ,&nbsp;Shiwen Teng ,&nbsp;Bo Li ,&nbsp;Na Xu ,&nbsp;Feng Lu ,&nbsp;Peng Zhang\",\"doi\":\"10.1016/j.aosl.2023.100337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fengyun-4 (FY-4), the latest collection of Chinese geostationary meteorological satellites, monitors the Eastern Hemisphere with high spatiotemporal resolutions. This study developed a cloud optical and microphysical property product for the Advanced Geosynchronous Radiation Imager (AGRI) onboard the FY-4 satellites. The product focuses on cloud optical thickness (COT) and cloud effective radius (CER) using a bi-spectral retrieval algorithm, and also includes cloud mask and phase using machine learning (ML) algorithms as prerequisites for COT and CER retrievals. The ML-based algorithm develops four independent models using Random Forest methods for cloud mask, liquid water, ice, and mixed-phase/multi-layer clouds, respectively. A two-habit ice and sphere water cloud model are employed to give their optical properties. Look-up tables of cloud reflectance in the COT and CER sensitive channels are built for efficient forward simulations, and the retrieval is performed by an optimal estimation algorithm. Compared with collocated active observations, the cloud mask and phase results give true positive rates of ∼95% and ∼85% and are more sensitive to mixed-phase clouds. Meanwhile, the AGRI-based COT and CER agree closely with those given by the collocated MODIS and AHI cloud products, and the correlation coefficients between MODIS and the AGRI results are 0.76 and 0.63 for COT and CER, respectively. The COT and CER retrievals will be persistently maintained and improved as the operational product for FY-4/AGRI.</p><p>摘要</p><p>风云四号作为中国新一代静止气象卫星, 提供了高时空分辨率的监测产品. 本文介绍风云四号搭载的先进地球同步轨道辐射成像仪AGRI的云光学和微物理特性产品. 该产品包含了基于双光谱通道反演的云光学厚度和云粒子有效半径产品, 以及基于机器学习的云识别和云相态产品. 与时空匹配的主动卫星观测结果对比显示, 该产品的云识别和云相态的准确率分别在95%和85%; 该产品提供的云光学厚度和云有效粒径与经典的MODIS产品的相关系数达到0.76和0.63. 团队将持续优化和更新该云光学和微物理特性定量产品, 服务风云四号卫星定量应用.</p></div>\",\"PeriodicalId\":47210,\"journal\":{\"name\":\"Atmospheric and Oceanic Science Letters\",\"volume\":\"16 3\",\"pages\":\"Article 100337\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric and Oceanic Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674283423000120\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674283423000120","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 2

摘要

风云四号(FY-4)是中国地球静止气象卫星的最新集合,以高时空分辨率监测东半球。这项研究为风云四号卫星上的先进地球同步辐射成像仪(AGRI)开发了一种云光学和微物理特性产品。该产品使用双光谱检索算法专注于云光学厚度(COT)和云有效半径(CER),还包括使用机器学习(ML)算法的云掩模和相位,作为COT和CER检索的先决条件。基于ML的算法使用随机森林方法分别为云幕、液态水、冰和混合相/多层云开发了四个独立的模型。采用两种习惯的冰和球体水云模型来给出它们的光学性质。建立了COT和CER敏感通道中云反射率的查找表,用于有效的前向模拟,并通过最优估计算法进行检索。与并置的主动观测相比,云掩模和相位结果的真实阳性率分别为~95%和~85%,并且对混合相位云更敏感。同时,基于AGRI的COT和CER与并置的MODIS和AHI云产品给出的结果非常一致,COT和CER的MODIS与AGRI结果的相关系数分别为0.76和0.63。COT和CER检索将作为FY-4/AGRI的运营产品得到持续维护和改进。摘要风云四号作为中国新一代静止气象卫星, 提供了高时空分辨率的监测产品. 本文介绍风云四号搭载的先进地球同步轨道辐射成像仪农业的云光学和微物理特性产品. 该产品包含了基于双光谱通道反演的云光学厚度和云粒子有效半径产品, 以及基于机器学习的云识别和云相态产品. 与时空匹配的主动卫星观测结果对比显示, 该产品的云识别和云相态的准确率分别在95%和85%;该产品提供的云光学厚度和云有效粒径与经典的MODIS产品的相关系数达到0.76和0.63。团队将持续优化和更新该云光学和微物理特性定量产品, 服务风云四号卫星定量应用.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A cloud optical and microphysical property product for the advanced geosynchronous radiation imager onboard China's Fengyun-4 satellites: The first version

Fengyun-4 (FY-4), the latest collection of Chinese geostationary meteorological satellites, monitors the Eastern Hemisphere with high spatiotemporal resolutions. This study developed a cloud optical and microphysical property product for the Advanced Geosynchronous Radiation Imager (AGRI) onboard the FY-4 satellites. The product focuses on cloud optical thickness (COT) and cloud effective radius (CER) using a bi-spectral retrieval algorithm, and also includes cloud mask and phase using machine learning (ML) algorithms as prerequisites for COT and CER retrievals. The ML-based algorithm develops four independent models using Random Forest methods for cloud mask, liquid water, ice, and mixed-phase/multi-layer clouds, respectively. A two-habit ice and sphere water cloud model are employed to give their optical properties. Look-up tables of cloud reflectance in the COT and CER sensitive channels are built for efficient forward simulations, and the retrieval is performed by an optimal estimation algorithm. Compared with collocated active observations, the cloud mask and phase results give true positive rates of ∼95% and ∼85% and are more sensitive to mixed-phase clouds. Meanwhile, the AGRI-based COT and CER agree closely with those given by the collocated MODIS and AHI cloud products, and the correlation coefficients between MODIS and the AGRI results are 0.76 and 0.63 for COT and CER, respectively. The COT and CER retrievals will be persistently maintained and improved as the operational product for FY-4/AGRI.

摘要

风云四号作为中国新一代静止气象卫星, 提供了高时空分辨率的监测产品. 本文介绍风云四号搭载的先进地球同步轨道辐射成像仪AGRI的云光学和微物理特性产品. 该产品包含了基于双光谱通道反演的云光学厚度和云粒子有效半径产品, 以及基于机器学习的云识别和云相态产品. 与时空匹配的主动卫星观测结果对比显示, 该产品的云识别和云相态的准确率分别在95%和85%; 该产品提供的云光学厚度和云有效粒径与经典的MODIS产品的相关系数达到0.76和0.63. 团队将持续优化和更新该云光学和微物理特性定量产品, 服务风云四号卫星定量应用.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric and Oceanic Science Letters
Atmospheric and Oceanic Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.20
自引率
8.70%
发文量
925
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信