超疏水二氧化硅纳米结构金属基板的防冰性能研究

IF 4.7 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Tanyakorn Muangnapoh , Nipitpon Janampansang , Salida Chuphong , Chanathip Chevachotivut , Bhawat Traipattanakul , Pisist Kumnorkaew , Tippawan Sodsai
{"title":"超疏水二氧化硅纳米结构金属基板的防冰性能研究","authors":"Tanyakorn Muangnapoh ,&nbsp;Nipitpon Janampansang ,&nbsp;Salida Chuphong ,&nbsp;Chanathip Chevachotivut ,&nbsp;Bhawat Traipattanakul ,&nbsp;Pisist Kumnorkaew ,&nbsp;Tippawan Sodsai","doi":"10.1016/j.colcom.2023.100745","DOIUrl":null,"url":null,"abstract":"<div><p>Superhydrophobic surfaces have proven effective in mitigating ice formation on substrates. This study aimed to experimentally investigate the effects of the surface structure of selected metal substrates on the anti-icing performance. Superhydrophobic surfaces were fabricated on aluminum, copper, stainless steel, and titanium substrates using a spray coating technique with superhydrophobic tridecafluorooctyl triethoxy silane (FAS)-functionalized colloidal silica nanoparticles. The surface wettability, surface morphology, and chemical analysis of the coated surfaces were reported. The results demonstrated successful deposition of silica nanoparticles on all substrates, significantly improving the anti-icing property of the coated surfaces. When compared with uncoated surfaces, the droplet icing times of the coated aluminum plate (C-Al), of the coated copper plate (C-Cu), of the coated stainless steel plate (C-SS), and of the coated titanium plate (C-Ti) significantly enhanced by 751%, 795%, 830% and 1320%, respectively. Also, a heat transfer model was also developed to explain the anti-icing phenomenon.</p></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"57 ","pages":"Article 100745"},"PeriodicalIF":4.7000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The study of the anti-icing performance of superhydrophobic silica-nanostructured metal substrates\",\"authors\":\"Tanyakorn Muangnapoh ,&nbsp;Nipitpon Janampansang ,&nbsp;Salida Chuphong ,&nbsp;Chanathip Chevachotivut ,&nbsp;Bhawat Traipattanakul ,&nbsp;Pisist Kumnorkaew ,&nbsp;Tippawan Sodsai\",\"doi\":\"10.1016/j.colcom.2023.100745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Superhydrophobic surfaces have proven effective in mitigating ice formation on substrates. This study aimed to experimentally investigate the effects of the surface structure of selected metal substrates on the anti-icing performance. Superhydrophobic surfaces were fabricated on aluminum, copper, stainless steel, and titanium substrates using a spray coating technique with superhydrophobic tridecafluorooctyl triethoxy silane (FAS)-functionalized colloidal silica nanoparticles. The surface wettability, surface morphology, and chemical analysis of the coated surfaces were reported. The results demonstrated successful deposition of silica nanoparticles on all substrates, significantly improving the anti-icing property of the coated surfaces. When compared with uncoated surfaces, the droplet icing times of the coated aluminum plate (C-Al), of the coated copper plate (C-Cu), of the coated stainless steel plate (C-SS), and of the coated titanium plate (C-Ti) significantly enhanced by 751%, 795%, 830% and 1320%, respectively. Also, a heat transfer model was also developed to explain the anti-icing phenomenon.</p></div>\",\"PeriodicalId\":10483,\"journal\":{\"name\":\"Colloid and Interface Science Communications\",\"volume\":\"57 \",\"pages\":\"Article 100745\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid and Interface Science Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215038223000523\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Interface Science Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215038223000523","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

摘要

超疏水表面已被证明在减缓基底上结冰方面是有效的。本研究旨在通过实验研究所选金属基底的表面结构对防冰性能的影响。采用超疏水十三氟辛基三乙氧基硅烷(FAS)功能化胶体二氧化硅纳米颗粒喷涂技术,在铝、铜、不锈钢和钛基底上制备了超疏水表面。报道了涂层表面的润湿性、表面形态和化学分析。结果表明,二氧化硅纳米颗粒成功沉积在所有基底上,显著提高了涂层表面的防结冰性能。与未涂覆表面相比,涂覆铝板(C-Al)、涂覆铜板(C-Cu)、涂覆不锈钢板(C-SS)和涂覆钛板(C-Ti)的液滴结冰时间分别显著提高了751%、795%、830%和1320%。此外,还建立了一个传热模型来解释防冰现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The study of the anti-icing performance of superhydrophobic silica-nanostructured metal substrates

The study of the anti-icing performance of superhydrophobic silica-nanostructured metal substrates

Superhydrophobic surfaces have proven effective in mitigating ice formation on substrates. This study aimed to experimentally investigate the effects of the surface structure of selected metal substrates on the anti-icing performance. Superhydrophobic surfaces were fabricated on aluminum, copper, stainless steel, and titanium substrates using a spray coating technique with superhydrophobic tridecafluorooctyl triethoxy silane (FAS)-functionalized colloidal silica nanoparticles. The surface wettability, surface morphology, and chemical analysis of the coated surfaces were reported. The results demonstrated successful deposition of silica nanoparticles on all substrates, significantly improving the anti-icing property of the coated surfaces. When compared with uncoated surfaces, the droplet icing times of the coated aluminum plate (C-Al), of the coated copper plate (C-Cu), of the coated stainless steel plate (C-SS), and of the coated titanium plate (C-Ti) significantly enhanced by 751%, 795%, 830% and 1320%, respectively. Also, a heat transfer model was also developed to explain the anti-icing phenomenon.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Colloid and Interface Science Communications
Colloid and Interface Science Communications Materials Science-Materials Chemistry
CiteScore
9.40
自引率
6.70%
发文量
125
审稿时长
43 days
期刊介绍: Colloid and Interface Science Communications provides a forum for the highest visibility and rapid publication of short initial reports on new fundamental concepts, research findings, and topical applications at the forefront of the increasingly interdisciplinary area of colloid and interface science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信