共享车辆定价

IF 2.2 3区 工程技术 Q2 ECONOMICS
Roman Zakharenko
{"title":"共享车辆定价","authors":"Roman Zakharenko","doi":"10.1016/j.ecotra.2022.100296","DOIUrl":null,"url":null,"abstract":"<div><p>This paper analyzes profit-maximizing pricing in a model of shared vehicle (SV) market, with particular emphasis on spatial inequality of demand. I show that the best policy assigns a score to every location, and rewards (penalizes) customers for relocating the vehicle to a place with higher (lower) score. Such spatially explicit pricing enables providers to expand the vehicle dropoff “home” area into otherwise unprofitable low-density suburban areas and into for-fee parking zones. A greater geographic coverage has positive spillovers on operations within the initial home area. The empirical part of the paper uses novel microdata on SV trips to develop a strategy to estimate demand parameters, extrapolate them into larger counterfactual home area, evaluate optimal location scores, and predict profit gains from the expansion.</p></div>","PeriodicalId":45761,"journal":{"name":"Economics of Transportation","volume":"33 ","pages":"Article 100296"},"PeriodicalIF":2.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pricing shared vehicles\",\"authors\":\"Roman Zakharenko\",\"doi\":\"10.1016/j.ecotra.2022.100296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper analyzes profit-maximizing pricing in a model of shared vehicle (SV) market, with particular emphasis on spatial inequality of demand. I show that the best policy assigns a score to every location, and rewards (penalizes) customers for relocating the vehicle to a place with higher (lower) score. Such spatially explicit pricing enables providers to expand the vehicle dropoff “home” area into otherwise unprofitable low-density suburban areas and into for-fee parking zones. A greater geographic coverage has positive spillovers on operations within the initial home area. The empirical part of the paper uses novel microdata on SV trips to develop a strategy to estimate demand parameters, extrapolate them into larger counterfactual home area, evaluate optimal location scores, and predict profit gains from the expansion.</p></div>\",\"PeriodicalId\":45761,\"journal\":{\"name\":\"Economics of Transportation\",\"volume\":\"33 \",\"pages\":\"Article 100296\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Economics of Transportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212012222000478\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economics of Transportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212012222000478","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了共享汽车(SV)市场模型中的利润最大化定价,特别强调了需求的空间不平等。我展示了最佳政策为每个地点分配一个分数,并奖励(惩罚)将车辆转移到分数较高(较低)的地方的客户。这种空间明确的定价使供应商能够将车辆接送“家庭”区域扩展到原本无利可图的低密度郊区和收费停车区。更大的地理覆盖范围对初始归属地区内的运营产生了积极的溢出效应。论文的实证部分使用SV旅行的新微观数据来制定一种策略,以估计需求参数,将其外推到更大的反事实家庭区域,评估最佳位置得分,并预测扩张带来的利润收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pricing shared vehicles

This paper analyzes profit-maximizing pricing in a model of shared vehicle (SV) market, with particular emphasis on spatial inequality of demand. I show that the best policy assigns a score to every location, and rewards (penalizes) customers for relocating the vehicle to a place with higher (lower) score. Such spatially explicit pricing enables providers to expand the vehicle dropoff “home” area into otherwise unprofitable low-density suburban areas and into for-fee parking zones. A greater geographic coverage has positive spillovers on operations within the initial home area. The empirical part of the paper uses novel microdata on SV trips to develop a strategy to estimate demand parameters, extrapolate them into larger counterfactual home area, evaluate optimal location scores, and predict profit gains from the expansion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
7.10%
发文量
19
审稿时长
69 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信