{"title":"小麦二氢黄酮醇-4还原酶样基因通过调节NADPH池和木质素的生物合成而赋予抗病能力","authors":"Qing-Hu Ma, Yun-Liang Li","doi":"10.1016/j.cpb.2023.100299","DOIUrl":null,"url":null,"abstract":"<div><p><em>Hm1</em> is the first cloned disease resistance gene (<em>R</em>) from maize which encodes an enzyme that detoxifies <em>Helminthosporium carbonum</em> (HC) toxin from the fungal pathogen <em>Cochliobolus carbonum</em>. The homologous genes for <em>Hm1</em> have been mined in various crop plants and their sequences are showed similar to dihydroflavonol-4-reductase (DFR), a key enzyme in flavonoid biosynthesis, therefore they are collectively named dihydroflavonol-4-reductase like (DFRL). The biological functions of DFRL are largely elusive. In the present study, DFRL gene was cloned from wheat, namely <em>TaDFRL</em>. <em>TaDFRL</em> was barely expressed in leaf, stem and root tissues; however, its expression level was rapidly increased following rust infection. Biochemical analysis showed that TaDFRL had the broad spectrum of substrate preference, including dihydroflavonol, flavonol and flavone, and could use both NAD and NADP as co-enzyme, which was quite distinct from DFR. Overexpressing <em>TaDFRL</em> in tobacco altered NAD(H) and NADP(H) pools towards to high NADPH levels. Subsequently, the gene expression of cinnamyl alcohol dehydrogenase (CAD) was up-regulated and lignin accumulation was increased. These brought about to enhance resistance to wildfire disease in tobacco plants. This research provides novel insights into DFRL mechanism, which boost host defense responses by elevating NADPH level and lignin biosynthesis.</p></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wheat dihydroflavonol-4-reductase like gene confers disease resistance by modulating NADPH pool and lignin biosynthesis\",\"authors\":\"Qing-Hu Ma, Yun-Liang Li\",\"doi\":\"10.1016/j.cpb.2023.100299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Hm1</em> is the first cloned disease resistance gene (<em>R</em>) from maize which encodes an enzyme that detoxifies <em>Helminthosporium carbonum</em> (HC) toxin from the fungal pathogen <em>Cochliobolus carbonum</em>. The homologous genes for <em>Hm1</em> have been mined in various crop plants and their sequences are showed similar to dihydroflavonol-4-reductase (DFR), a key enzyme in flavonoid biosynthesis, therefore they are collectively named dihydroflavonol-4-reductase like (DFRL). The biological functions of DFRL are largely elusive. In the present study, DFRL gene was cloned from wheat, namely <em>TaDFRL</em>. <em>TaDFRL</em> was barely expressed in leaf, stem and root tissues; however, its expression level was rapidly increased following rust infection. Biochemical analysis showed that TaDFRL had the broad spectrum of substrate preference, including dihydroflavonol, flavonol and flavone, and could use both NAD and NADP as co-enzyme, which was quite distinct from DFR. Overexpressing <em>TaDFRL</em> in tobacco altered NAD(H) and NADP(H) pools towards to high NADPH levels. Subsequently, the gene expression of cinnamyl alcohol dehydrogenase (CAD) was up-regulated and lignin accumulation was increased. These brought about to enhance resistance to wildfire disease in tobacco plants. This research provides novel insights into DFRL mechanism, which boost host defense responses by elevating NADPH level and lignin biosynthesis.</p></div>\",\"PeriodicalId\":38090,\"journal\":{\"name\":\"Current Plant Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214662823000282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214662823000282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Wheat dihydroflavonol-4-reductase like gene confers disease resistance by modulating NADPH pool and lignin biosynthesis
Hm1 is the first cloned disease resistance gene (R) from maize which encodes an enzyme that detoxifies Helminthosporium carbonum (HC) toxin from the fungal pathogen Cochliobolus carbonum. The homologous genes for Hm1 have been mined in various crop plants and their sequences are showed similar to dihydroflavonol-4-reductase (DFR), a key enzyme in flavonoid biosynthesis, therefore they are collectively named dihydroflavonol-4-reductase like (DFRL). The biological functions of DFRL are largely elusive. In the present study, DFRL gene was cloned from wheat, namely TaDFRL. TaDFRL was barely expressed in leaf, stem and root tissues; however, its expression level was rapidly increased following rust infection. Biochemical analysis showed that TaDFRL had the broad spectrum of substrate preference, including dihydroflavonol, flavonol and flavone, and could use both NAD and NADP as co-enzyme, which was quite distinct from DFR. Overexpressing TaDFRL in tobacco altered NAD(H) and NADP(H) pools towards to high NADPH levels. Subsequently, the gene expression of cinnamyl alcohol dehydrogenase (CAD) was up-regulated and lignin accumulation was increased. These brought about to enhance resistance to wildfire disease in tobacco plants. This research provides novel insights into DFRL mechanism, which boost host defense responses by elevating NADPH level and lignin biosynthesis.
期刊介绍:
Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.