卫星数据揭示了北马鲁古海和苏禄海发生叶绿素a大量繁殖的独特机制

IF 1.9 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Bayu Munandar , Anindya Wirasatriya , Denny Nugroho Sugianto , R. Dwi Susanto , Adi Purwandana , Kunarso
{"title":"卫星数据揭示了北马鲁古海和苏禄海发生叶绿素a大量繁殖的独特机制","authors":"Bayu Munandar ,&nbsp;Anindya Wirasatriya ,&nbsp;Denny Nugroho Sugianto ,&nbsp;R. Dwi Susanto ,&nbsp;Adi Purwandana ,&nbsp;Kunarso","doi":"10.1016/j.dynatmoce.2023.101360","DOIUrl":null,"url":null,"abstract":"<div><p>Chlorophyll-a is the predominant phytoplankton pigment responsible for determining primary productivity. In the present study, we used satellite-based data of chlorophyll-a, surface wind, and precipitation from 2003 to 2019 to investigate the variability of chlorophyll-a in the northern Maluku Sea and the Sulu Sill and examine its generating mechanism. We found that the chlorophyll-a bloom in the northern Maluku Sea occurs during the southeast monsoon season, while in the Sulu Sill, the chlorophyll-a concentration is higher than that in the northern Maluku Sea and occurs throughout the year. In the northern Maluku Sea, the chlorophyll-a bloom is generated by coastal upwelling. The maximum southerly wind during the southeast monsoon generates the strongest offshore Ekman Mass Transport (EMT) in the northern Maluku Sea triggering coastal upwelling. However, the power spectra analysis of satellite-derived chlorophyll-a shows strong peaks and amplitudes at both fortnightly (MSf) and monthly (Mm) frequencies, indicating that tidal mixing is an important generating mechanism for chlorophyll-a blooms in the Sulu Sill. Shallow bathymetry in the Sulu Sill may aid tidal mixing in effectively transporting nutrients from the near bottom to the sea surface, increasing chlorophyll-a concentration.</p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Distinct mechanisms of chlorophyll-a blooms occur in the Northern Maluku Sea and Sulu Sill revealed by satellite data\",\"authors\":\"Bayu Munandar ,&nbsp;Anindya Wirasatriya ,&nbsp;Denny Nugroho Sugianto ,&nbsp;R. Dwi Susanto ,&nbsp;Adi Purwandana ,&nbsp;Kunarso\",\"doi\":\"10.1016/j.dynatmoce.2023.101360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chlorophyll-a is the predominant phytoplankton pigment responsible for determining primary productivity. In the present study, we used satellite-based data of chlorophyll-a, surface wind, and precipitation from 2003 to 2019 to investigate the variability of chlorophyll-a in the northern Maluku Sea and the Sulu Sill and examine its generating mechanism. We found that the chlorophyll-a bloom in the northern Maluku Sea occurs during the southeast monsoon season, while in the Sulu Sill, the chlorophyll-a concentration is higher than that in the northern Maluku Sea and occurs throughout the year. In the northern Maluku Sea, the chlorophyll-a bloom is generated by coastal upwelling. The maximum southerly wind during the southeast monsoon generates the strongest offshore Ekman Mass Transport (EMT) in the northern Maluku Sea triggering coastal upwelling. However, the power spectra analysis of satellite-derived chlorophyll-a shows strong peaks and amplitudes at both fortnightly (MSf) and monthly (Mm) frequencies, indicating that tidal mixing is an important generating mechanism for chlorophyll-a blooms in the Sulu Sill. Shallow bathymetry in the Sulu Sill may aid tidal mixing in effectively transporting nutrients from the near bottom to the sea surface, increasing chlorophyll-a concentration.</p></div>\",\"PeriodicalId\":50563,\"journal\":{\"name\":\"Dynamics of Atmospheres and Oceans\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics of Atmospheres and Oceans\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377026523000118\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Atmospheres and Oceans","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377026523000118","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 3

摘要

叶绿素a是决定初级生产力的主要浮游植物色素。在本研究中,我们使用了2003年至2019年基于卫星的叶绿素a、表面风和降水数据,研究了马鲁古海北部和苏鲁海的叶绿素a变化,并研究了其产生机制。我们发现,马鲁古海北部的叶绿素a开花发生在东南季风季节,而苏鲁新海的叶绿素a浓度高于马鲁古海北部,并且全年都在发生。在马鲁古海北部,叶绿素a的绽放是由海岸上升流产生的。东南季风期间的最大南风在马鲁古海北部产生了最强的近海埃克曼质量输送(EMT),引发了海岸上升流。然而,卫星衍生的叶绿素a的功率谱分析显示,在每两周(MSf)和每月(Mm)的频率上都有很强的峰值和振幅,这表明潮汐混合是苏鲁Sill叶绿素a水华的重要生成机制。苏鲁Sill的浅层测深可能有助于潮汐混合,有效地将营养物质从近海底输送到海面,增加叶绿素a的浓度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distinct mechanisms of chlorophyll-a blooms occur in the Northern Maluku Sea and Sulu Sill revealed by satellite data

Chlorophyll-a is the predominant phytoplankton pigment responsible for determining primary productivity. In the present study, we used satellite-based data of chlorophyll-a, surface wind, and precipitation from 2003 to 2019 to investigate the variability of chlorophyll-a in the northern Maluku Sea and the Sulu Sill and examine its generating mechanism. We found that the chlorophyll-a bloom in the northern Maluku Sea occurs during the southeast monsoon season, while in the Sulu Sill, the chlorophyll-a concentration is higher than that in the northern Maluku Sea and occurs throughout the year. In the northern Maluku Sea, the chlorophyll-a bloom is generated by coastal upwelling. The maximum southerly wind during the southeast monsoon generates the strongest offshore Ekman Mass Transport (EMT) in the northern Maluku Sea triggering coastal upwelling. However, the power spectra analysis of satellite-derived chlorophyll-a shows strong peaks and amplitudes at both fortnightly (MSf) and monthly (Mm) frequencies, indicating that tidal mixing is an important generating mechanism for chlorophyll-a blooms in the Sulu Sill. Shallow bathymetry in the Sulu Sill may aid tidal mixing in effectively transporting nutrients from the near bottom to the sea surface, increasing chlorophyll-a concentration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dynamics of Atmospheres and Oceans
Dynamics of Atmospheres and Oceans 地学-地球化学与地球物理
CiteScore
3.10
自引率
5.90%
发文量
43
审稿时长
>12 weeks
期刊介绍: Dynamics of Atmospheres and Oceans is an international journal for research related to the dynamical and physical processes governing atmospheres, oceans and climate. Authors are invited to submit articles, short contributions or scholarly reviews in the following areas: •Dynamic meteorology •Physical oceanography •Geophysical fluid dynamics •Climate variability and climate change •Atmosphere-ocean-biosphere-cryosphere interactions •Prediction and predictability •Scale interactions Papers of theoretical, computational, experimental and observational investigations are invited, particularly those that explore the fundamental nature - or bring together the interdisciplinary and multidisciplinary aspects - of dynamical and physical processes at all scales. Papers that explore air-sea interactions and the coupling between atmospheres, oceans, and other components of the climate system are particularly welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信