Haoyu Jin , Ruida Zhong , Moyang Liu , Changxin Ye , Xiaohong Chen
{"title":"利用EEMD模态分解结合机器学习模型提高中国沿海地区月度海平面预测的精度","authors":"Haoyu Jin , Ruida Zhong , Moyang Liu , Changxin Ye , Xiaohong Chen","doi":"10.1016/j.dynatmoce.2023.101370","DOIUrl":null,"url":null,"abstract":"<div><p><span>In the context of climate change and human activities, the global sea level is facing a rising trend, which poses serious challenges to the ecological environment of coastal areas. In this study, we selected the monthly mean sea level (MSL) time series of 9 stations in the coastal areas of China as the research object. First, we analyzed the spatiotemporal distribution characteristics of the monthly MSL in the coastal areas of China. Secondly, we analyzed the ability of ensemble empirical mode decomposition (EEMD) to decompose the monthly MSL series. Finally, we choose three machine learning models, namely Back Propagation<span> (BP), K-Nearest Neighbor (KNN), and Long Short-Term Memory (LSTM) neural network models to compare model prediction effect between single machine learning models with machine learning models combined with EEMD. The results show that except for the YANTAI (YT) station, which showed an insignificant downward trend, the monthly MSL of other stations showed an upward trend, indicating that the coastal areas of China are facing the risk of sea level rise. EEMD can effectively reduce the complexity of the original monthly MSL time series, and different intrinsic mode functions (IMFs) reflect changes in monthly MSL at different frequencies. Comparing the single machine learning model and the machine learning model combined with EEMD, it is found that the simulation effect of the machine learning model combined with EEMD is better than that of the single model. The model with the best prediction effect on monthly MSL in the coastal areas of China is LSTM-EEMD, followed by KNN-EEMD. This study provides an important reference for systematically understanding </span></span>sea level changes and selecting an appropriate monthly MSL prediction model in the coastal areas of China.</p></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using EEMD mode decomposition in combination with machine learning models to improve the accuracy of monthly sea level predictions in the coastal area of China\",\"authors\":\"Haoyu Jin , Ruida Zhong , Moyang Liu , Changxin Ye , Xiaohong Chen\",\"doi\":\"10.1016/j.dynatmoce.2023.101370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In the context of climate change and human activities, the global sea level is facing a rising trend, which poses serious challenges to the ecological environment of coastal areas. In this study, we selected the monthly mean sea level (MSL) time series of 9 stations in the coastal areas of China as the research object. First, we analyzed the spatiotemporal distribution characteristics of the monthly MSL in the coastal areas of China. Secondly, we analyzed the ability of ensemble empirical mode decomposition (EEMD) to decompose the monthly MSL series. Finally, we choose three machine learning models, namely Back Propagation<span> (BP), K-Nearest Neighbor (KNN), and Long Short-Term Memory (LSTM) neural network models to compare model prediction effect between single machine learning models with machine learning models combined with EEMD. The results show that except for the YANTAI (YT) station, which showed an insignificant downward trend, the monthly MSL of other stations showed an upward trend, indicating that the coastal areas of China are facing the risk of sea level rise. EEMD can effectively reduce the complexity of the original monthly MSL time series, and different intrinsic mode functions (IMFs) reflect changes in monthly MSL at different frequencies. Comparing the single machine learning model and the machine learning model combined with EEMD, it is found that the simulation effect of the machine learning model combined with EEMD is better than that of the single model. The model with the best prediction effect on monthly MSL in the coastal areas of China is LSTM-EEMD, followed by KNN-EEMD. This study provides an important reference for systematically understanding </span></span>sea level changes and selecting an appropriate monthly MSL prediction model in the coastal areas of China.</p></div>\",\"PeriodicalId\":50563,\"journal\":{\"name\":\"Dynamics of Atmospheres and Oceans\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics of Atmospheres and Oceans\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377026523000210\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Atmospheres and Oceans","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377026523000210","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Using EEMD mode decomposition in combination with machine learning models to improve the accuracy of monthly sea level predictions in the coastal area of China
In the context of climate change and human activities, the global sea level is facing a rising trend, which poses serious challenges to the ecological environment of coastal areas. In this study, we selected the monthly mean sea level (MSL) time series of 9 stations in the coastal areas of China as the research object. First, we analyzed the spatiotemporal distribution characteristics of the monthly MSL in the coastal areas of China. Secondly, we analyzed the ability of ensemble empirical mode decomposition (EEMD) to decompose the monthly MSL series. Finally, we choose three machine learning models, namely Back Propagation (BP), K-Nearest Neighbor (KNN), and Long Short-Term Memory (LSTM) neural network models to compare model prediction effect between single machine learning models with machine learning models combined with EEMD. The results show that except for the YANTAI (YT) station, which showed an insignificant downward trend, the monthly MSL of other stations showed an upward trend, indicating that the coastal areas of China are facing the risk of sea level rise. EEMD can effectively reduce the complexity of the original monthly MSL time series, and different intrinsic mode functions (IMFs) reflect changes in monthly MSL at different frequencies. Comparing the single machine learning model and the machine learning model combined with EEMD, it is found that the simulation effect of the machine learning model combined with EEMD is better than that of the single model. The model with the best prediction effect on monthly MSL in the coastal areas of China is LSTM-EEMD, followed by KNN-EEMD. This study provides an important reference for systematically understanding sea level changes and selecting an appropriate monthly MSL prediction model in the coastal areas of China.
期刊介绍:
Dynamics of Atmospheres and Oceans is an international journal for research related to the dynamical and physical processes governing atmospheres, oceans and climate.
Authors are invited to submit articles, short contributions or scholarly reviews in the following areas:
•Dynamic meteorology
•Physical oceanography
•Geophysical fluid dynamics
•Climate variability and climate change
•Atmosphere-ocean-biosphere-cryosphere interactions
•Prediction and predictability
•Scale interactions
Papers of theoretical, computational, experimental and observational investigations are invited, particularly those that explore the fundamental nature - or bring together the interdisciplinary and multidisciplinary aspects - of dynamical and physical processes at all scales. Papers that explore air-sea interactions and the coupling between atmospheres, oceans, and other components of the climate system are particularly welcome.